设函数f(x)=x^2-ax+a+3,g(x)=ax-2a.若不存在x0∈R,使得f(x0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 01:35:01
设函数f(x)=x^2-ax+a+3,g(x)=ax-2a.若不存在x0∈R,使得f(x0)
xN@_GH[6Gd= C#*Z0 "Qn멯Lc$xfvfg~76rH *"\҉‹(b`m4J\W\nFVhMxh+MnyI3Y2|KKMBam)Qs8&6Q{Vk xQ+QlGEmu(p

设函数f(x)=x^2-ax+a+3,g(x)=ax-2a.若不存在x0∈R,使得f(x0)
设函数f(x)=x^2-ax+a+3,g(x)=ax-2a.若不存在x0∈R,使得f(x0)

设函数f(x)=x^2-ax+a+3,g(x)=ax-2a.若不存在x0∈R,使得f(x0)
求出存在的情况
f(x)=x^2-ax+a+3,是开口向上的抛物线,当其图象与X轴有两个交点时,能保证f(x)中存在点X0,使f(X0)0
解得 a>6或a6,且g((a-根号△)/2)=a(a-根号△)/2-2a7;
(2)当a

f(x)=x^2-ax+a+3,是开口向上的抛物线,当其图象与X轴有两个交点时,能保证f(x)中存在点X0,使f(X0)<0,这时 △=a^2-4(a+3)>0 a>6 a<-2
抛物线与X轴的两个交点是A( (a+根号△)/2,0),B( (a-根号△)/2,0)
(1)当a>6,且g((a-根号△)/2)=a(a-根号△)/2-2...

全部展开

f(x)=x^2-ax+a+3,是开口向上的抛物线,当其图象与X轴有两个交点时,能保证f(x)中存在点X0,使f(X0)<0,这时 △=a^2-4(a+3)>0 a>6 a<-2
抛物线与X轴的两个交点是A( (a+根号△)/2,0),B( (a-根号△)/2,0)
(1)当a>6,且g((a-根号△)/2)=a(a-根号△)/2-2a<0时,存在X0使g(X0)<0,
根号△>a-4 a>7;
(2)当a<-2,且g((a+根号△)/2)=a(a+根号△)/2-2a<0时,存在X0使g(X0)<0,
根号△>4-a, a>7与a<-2矛盾;
因此a>7

收起

设函数f(x)=ax^2-2x,若x∈[0,3],求最小值g(a)的表达式. 设函数f(x)=x^2-ax+a+3,g(x)=ax-2a,若存在x0属于R,使得f(x0) 设函数f(x)=x^2-ax+a+3,g(x)=ax-2a若存在xR使得f(x0) 设函数f(x)=x^2-ax+a+3,g(x)=ax-2a,若存在x0属于R,使得f(x0) 设函数f(x)=x^2-ax+a+3,g(x)=ax-2a.若不存在x0∈R,使得f(x0) 设函数f(x)=x^2-ax+3,g(x)=ax-2a,若存在x0属于R,使得f(x0) 设函数f(x)=x^3+ax^2-a^2x+1,g(x)=ax^2-2x+1,其中实数a不等0,若a>0,求函数f(x)的单调区间 设函数f(x)=x^3+ax^2-a^2x+1,g(x)=ax^2-2x+1,其中实数a不等0,若a>0,求函数f(x)的单调区间 设函数f(x)={1,1大于等于x小于等于2,x-1,2小于x大于等于3},g(x)=f(x)-ax,x属于[1,3],其中a属于R,记函数g(x 设a属于R,函数f(x)=ax^3-3x^2 若函数g(x)=f(x)+f'(x),x属于[0,2],在x=0处取得最大值 求a的取值范围 设a∈R,函数f(x)=ax^3-3x^2,若函数g(x)=f(x)+f'(x),x∈【0,2】,在x=0处取得最大值,求a的取值范围 设a∈R,函数f(x)=ax^3-3x^2.若函数g(x)=f(x)+f'(x),x∈[0,2],在x=0处取得最大值,求a的取值范围 已知函数f(x)=x^3-3ax+b(a,b∈R) .(2)设b=0,且g(x)=|f(x)|,(|x|≤1),求函数g(x)的最大值h(a) 设函数f(x)=ax+b(a,b∈R),g(x)=x^2+c(c 设函数f(x)=x^2+2ax+3a-1在区间[-2,4]上的最小值为g(a),求g(a)的表达式 已知二次函数f(x)=ax²+bx+3,其导函数f'(x)=2x-8 求a,b的值 设函数g(x)已知二次函数f(x)=ax²+bx+3,其导函数f'(x)=2x-8求a,b的值设函数g(x)=e的x次方乘以sinx+f(x),求曲线g(x)在x=0处的切线方程 设函数f(x)=ax³-3x²(a∈R),且x=2是y=f(x)的极值点.求函数g(x)=e^x·f(x)的单调区间. 设a∈R,函数f(x)=ax³-3x².若函数g(x)=f(x)+f’(x),x∈[0,2],在x=0处取得最大值,求a的取值范围设a∈R,函数f(x)=ax³-3x²。若函数g(x)=f(x)+f’(x),x∈[0,2],在x=0处取得最大值