我国

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 08:24:05
我国
xVnVH0&R:~@5jIbؐ 4I!N&bnR`!>6O3>񾬽{Pe/Ǎov^3q- ]vݵe)O9=YicCI`:dfNdΖcgJ=g1JKV[c=~%gPwDu(w¥dImF))wQrrmdKQb[d7{鹓֨~ /De Lp&Y?x ĐRثȲhA]ޱmpBɢeKU#s;:Ⱥc~6.B6brfWONGJgeP)$S^[9%:. *)FqFgxT'ȵ,C@hOm+[c󋊿F:Ⱥc `nˣCD/(Ь4J"+<D$ H@p0j-nQN\H(4T$ODYڭ7fe oB12[t'a/}yT0}-:9+5p=eڟ'iJ.,нw6~}o-/dwE<>/ Rɶ6#NG&|]*cK.lO?u3Ks?TIFV<(&u=ujP7;b"gbeԽ,7=ien6#:sq6 RL+\z +֊ ǑnO @n *,Uey&+jlE@[Bm6FbZeq^n vȎ/%92/PqKwR8n؋ҥLkߢ4V_/*D7C32!aAcTS.ZsF=jﰎyTG_cZ*O<]hvf7(FC}C\ H*iƣ #:=A֕fmo2NZzV*.VU._@VѮdv7ެՎX%YAW bB,4ߟ0k3Ζ>wVSt]'|U>1J2fn<%9l%/,ӿ([LL"&ǃ5vk4x00[T͋!G*'pxaFʸ܋|T 3yiV夆+Eq̂׭ާ#ihX& h|C/pO}WJ[o-hA(5:uOu{p66t.o=cv!b¥U

我国
我国

我国
我国西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547,到了东汉时代,张衡(公元78-139年)求得两个比,一是92 29=3.17241…,另一个是10,约等于3.1622.(印度数学家罗笈多也曾定圆周率为10,但已迟于张衡500多年.) 到了三国时,魏人刘徽(公元263年)创立了求圆周率的准确值的原理,他用割圆术求得圆周率的前三位数字是π≈3.14…,称为徽率.到南北朝时代的祖冲之(公元429年—500年),他已推算出 3.1415926<π<3.1415927.也就是π≈3.1415926…,他是世界上第一个确定圆周率准确到7位小数的人.祖冲之又提出了用两个分数表示π的近似值.即22 7及355 113,分别称为π的约率和密度.在祖冲之发现密率一千多年后,欧洲的安托尼兹(16世纪~17世纪)才重新发现了这个值.

我国 西汉末年,刘歆(约分元前50年到公元23年)定圆周率为3.1547

准确来说是我国古代的数学家祖冲之,明确提出它的人是祖冲之。不能说是“发明” 圆周率并不是祖冲之发明的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 我国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一...

全部展开

准确来说是我国古代的数学家祖冲之,明确提出它的人是祖冲之。不能说是“发明” 圆周率并不是祖冲之发明的,他之前,刘徽就就计算过圆周率. 作为数学家,研究计算圆周率应该是他们的专业方向之一. 我国古代数学家对圆周率方面的研究工作,成绩是突出的。早在三国时期,著名数学家刘徽就用割圆术将圆周率精确到小数点后3位,南北朝时期的祖冲之在刘徽研究的基础上,将圆周率精确到了小数点后7位,这一成就比欧洲人要早一千多年。 祖冲之是和他儿子一起从事这项研究工作的,当时条件很差。他们在一间大屋的地上画了一个直径1丈的大圆。从内接正6边形开始计算,12边形,24边形,48边形的翻翻,一直算到96边形,计算的结果和刘徽的一样。接着,内接边数再逐次翻翻,边数每翻一次,要进行7次加减运算,2次乘方,2次开方,运算的数字都很大,很复杂,在当时的条件下,是十分困难的。祖冲之父子一直把边形算到24576边,得出了圆周率在3·1415926和3·1415927之间,精确到了小数点后7位。其近似分数是 355/113,被称为"密率"。德国数学家奥托在1573年重新得出这个近似分数。当时,欧洲人还不知道在一千多年之前祖冲之就己经算出来了。后来荷兰人安托尼兹也算出这个近似分数,于是欧洲人就把这个称为"密率"的近似分数叫着"安托尼兹率"。日本数学家认为应该恢复其本来面目,肯定祖冲之在圆周率方面研究的贡献,改称"祖率"才对

收起