无穷个无穷小的乘积一定是无穷小吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:57:20
无穷个无穷小的乘积一定是无穷小吗
xUMoW+^6cWxeVBVA*`Cb0 cߋ:wް/ydL6i9xfx{ouvR ]f~(<r1rw3"|6ʪo\~3 >}^w.󄿷y.D6 {~TRKC?4cL,壆sF9&孀#|< ~[+rx˽?) <)WR|\؜ uAqKهEw6HPnUtфĵ@xpЕESEAN'D1o!~i4ؑ|LLC7c&?8144>fDnyrf'j۵N B0)5~t&aj"(ET(yFSlpNU

无穷个无穷小的乘积一定是无穷小吗
无穷个无穷小的乘积一定是无穷小吗

无穷个无穷小的乘积一定是无穷小吗
不一定
An1=1 ,1/2 ,1/3 ,1/4 ,1/5 ,1/6……1/k……
An2=1 ,2^2 ,1/3 ,1/4 ,1/5 ,1/6……1/k……
An3=1 ,1 ,3^3 ,1/4 ,1/5 ,1/6……1/k……
An4=1 ,1 ,1 ,4^4 ,1/5 ,1/6……1/k……
……………………………………………………
Anx=1 ,1 ,1 ,……,1 ,x^x,1/(x+1),1/(X+2),……
{(x-1)个1}
…………………………………………………………
以上所有数列均为无穷小量
令Bn=An1*An2*……*Anx…………
则B1=1
B2=2
B3=3
……
Bn=n
……
……
所以Bn为无穷大量而非无穷小量

当然。不用无穷个,只要乘积里没有无穷大,只要一个无穷小就够了。无穷个当然更是了。

当然了,无穷小乘有界量都是无穷小,何况是无穷小乘无穷小!!!

一定是

非也。
0×∞是一个“不定值”。这里的“无穷大”代表着一种变化趋势;同样,“无穷小”也是一种变化趋势(而不能笼统地理解为初中和小学数学中讲到的那个具体而实在的数——“0”)。“无穷大”和“无穷小”是两种变化趋势相反的量,二者相乘,各自的作用互相抵销,其结果必然可以取得一个“平衡”点:二者变化“快”与“慢”的程度不同决定了它俩相乘的结果可以有无数种,即:有可能是任何的数。
“不定值”...

全部展开

非也。
0×∞是一个“不定值”。这里的“无穷大”代表着一种变化趋势;同样,“无穷小”也是一种变化趋势(而不能笼统地理解为初中和小学数学中讲到的那个具体而实在的数——“0”)。“无穷大”和“无穷小”是两种变化趋势相反的量,二者相乘,各自的作用互相抵销,其结果必然可以取得一个“平衡”点:二者变化“快”与“慢”的程度不同决定了它俩相乘的结果可以有无数种,即:有可能是任何的数。
“不定值”有0/0,∞/∞,0×∞,1的∞次方等多种类型。这在“微积分”这门学科里论述得很清楚。
0/0,∞/∞,0×∞这三种类型可以互相转化。试证明如下:0/0=0×1/0=0×∞=1/∞×∞=∞/∞(基本知识点:1/0=∞,1/∞=0)
最直观地,对于0/0这一结果的不确定性,我可以举个特殊的一元一次方程来说清楚这个道理。比如方程0X=0,我们可以看出,未知数X取任何数值都可以保证等式两边成立;同时,我们可以清楚地看到:这里的X等于0/0。

收起

无穷个无穷小的乘积一定是无穷小吗 极限运算法则中为何特地说明“有限个无穷小”?有限个无穷小的和是无穷小,有限个无穷小的乘积是无穷小.无穷多个无穷小的和(乘积)与此不同吗,能否作出说明? 无穷多个无穷小的积是无穷小吗 无穷多个无穷小的积是无穷小吗 无穷个无穷小的乘积不为0的证明.证明无穷个无穷小的乘积不为无穷小. 无限个无穷小的和一定是无穷小吗 有限个无穷小乘积是无穷小 无限个无穷小的乘积是不是无穷小? 无穷多个无穷小的积不一定是无穷小,为什么? 为什么“有界函数与无穷小的乘积是无穷小”可以推出“有限个无穷小的乘积是无穷小”? 无穷小乘有界量等于无穷小,反之,一个函数乘有界量等于无穷小,函数的极限一定是无穷小吗? 有限个无穷小的乘积为无穷小 ,为什么如果是两个负无穷相乘,不就是正无穷大了么 无界函数与无穷小的乘积是无穷小吗? 无限个无穷小量的乘积是不是无穷小? 无限个无穷小的乘积仍是无穷小吗?若不是,请举列说明. 为什么“无穷多个无穷小的乘积不一定是无穷小”?“无穷多个无穷小的和不一定是无穷小”这还好理解.可“无穷多个无穷小的乘积”为何不一定是无穷小呢?三四楼的二位朋友:尤其是三楼 有限个无穷小的乘积是无穷小(定理)那无限个无穷小的乘积是无穷小吗?能举个例子吗?有限个无穷小的和是无穷小(定理) 但是无限个无穷小的和不是无穷小啊.有例子.对于乘积,我感觉也是 俩个无穷小的商是否一定是无穷小