求定积分:∫(上标是(3/4),下标是0)(x+1)/(1+x^2)^(1/2)dx=

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/17 22:17:49
求定积分:∫(上标是(3/4),下标是0)(x+1)/(1+x^2)^(1/2)dx=
xJ@W*JC%sK&[L1QƦbqUUpeAѝeeQ_F+_(P93;*YFL,A>1ѹBb!$BXcb3=$4 ja)OI ?K6O6NnoM?, E

求定积分:∫(上标是(3/4),下标是0)(x+1)/(1+x^2)^(1/2)dx=
求定积分:∫(上标是(3/4),下标是0)(x+1)/(1+x^2)^(1/2)dx=

求定积分:∫(上标是(3/4),下标是0)(x+1)/(1+x^2)^(1/2)dx=
原函数是 √(1+x²) + ln [ x + √(1+x²) ]
所求积分值 = 1/4 + ln2

收起