f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)定积分【0,1】

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 02:16:51
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)定积分【0,1】
x)KӨ|:gEa]/{{u/_ $Rakb}}/7?0@-Ov4 [Cg Ov/U0/.H̳9

f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)定积分【0,1】
f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)
定积分【0,1】

f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)定积分【0,1】
设 x=1-t 所以 0

如何证明这个关于定积分的等式?已知f(x)在[0,1]上连续 求设f'(x)在[0,a]上连续.f(0)=0,证明|定积分f(x)d(x) f(x)=x 在闭区间(1,2)上连续的定积分 设f(x)在[a,b]上连续,f(a)=f(b)=0,定积分f^2(x)从b到a等于1,则定积分xf(x)f'(x)=-1/2. 函数f(x)zai [0,1]上连续,证明在区间0到π内,定积分xf(sinx)=定积分π/2f(sinx) f(x)在[0,1]上连续,f'(1)=0,f(1)-f(0)=2,∫(0~1)xf(x)dx=?(定积分) 证明f(x)^2的定积分大于等于f(x)的定积分的平方两函数都在(0,1)上连续,比较在(0,1)上的)定积分 高等数学,定积分的运用.若f(x)在(-∝,+∞)上连续而且f(x)=∫(0,x) f(t)dt,证明f(x)≡0; y=f(x)在[0,1]上具有连续的导函数,且f(0)=f(1)=0,f(x)的平方的定积分为1,求x*f(x)*f'(x) f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)满足F'(x)≤0如题, f(x)在[0,1]上连续,定积分f(x)dx=0,证明至少存在一点ξ,使f(1-ξ)=-f(ξ)定积分【0,1】 设f(x)在[0,1]上连续,且x*f(x)在0到1上的定积分等于f(x)在0到1上的定积分.证明存在y属于0到1使f(x)在0到y上的定积分为0. 若f“(x)在[0,π]连续,f(0)=2,f(π)=1,求定积分上线π,下线0[f(x)+f(x)]sinx dx 积分中值定理证明f(x)在[-1,1]上连续,且满足[0,1]上定积分f(x)x^n 等于1,[0,1]上定积分f(x)x^k 等于0,k=0,1,2,...,n-1,证明|f(x)|在[0,1]上的最大值≧(n+1)2^n 积分中值定理证明f(x)在[-1,1]上连续,且满足[0,1]上定积分f(x)x^n 等于1,[0,1]上定积分f(x)x^k 等于0,k=0,1,2,...,n-1,证明|f(x)|在[0,1]上的最大值≧(n+1)2^n 高数f(x)在[-1,1]连续,则定积分∫(1到-1)[f(x)-f(-x)]dx f(x)=x+2倍的 f(t)在0-1上的定积分 求f(x)f(x)=(x+2)倍的 f(t)在0-1上的定积分 求f(x) 设f(x)在[0,1]上连续,且f(x)>0,证明:存在ξ属于(0,1)使得ξf(ξ)=f(x)在[ξ,1]上的定积分这是数学公式.