函数f(x)=sin(2x-π/4)-2√2(sin^2x)的最小正周期是?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 08:32:53
函数f(x)=sin(2x-π/4)-2√2(sin^2x)的最小正周期是?
x){ھ iřyFM4uu2z(gT~OY-4

函数f(x)=sin(2x-π/4)-2√2(sin^2x)的最小正周期是?
函数f(x)=sin(2x-π/4)-2√2(sin^2x)的最小正周期是?

函数f(x)=sin(2x-π/4)-2√2(sin^2x)的最小正周期是?
f(x)=sin2xcosπ/4-cos2xsinπ/4-2√2(1-cos2x)/2
=√2/2*sin2x-√2/2*cos2x+√2cos2x-√2
=√2/2*sin2x+√2/2*cos2x-√2
=sin2xcosπ/4+cos2xsinπ/4-√2
=sin(2x+π/4)-√2
T=2π/2=π

f(x)=sin2xcosπ/4-cos2xsinπ/4-2√2(1-cos2x)/2
=√2/2*sin2x-√2/2*cos2x+√2cos2x-√2
=√2/2*sin2x+√2/2*cos2x-√2
=sin2xcosπ/4+cos2xsinπ/4-√2
=sin(2x+π/4)-√2
T=2π/2=π
应是这样