线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 01:23:47
线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?
xJ@_emh

线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?
线性代数伴随矩阵
A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?

线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么?
A^-1 表示A逆
A* 表示A的伴随阵
|A|表示行列式A
因为 A^-1=A*/|A|
所以 B=A*=|A|A^-1
同理 B^-1=B*/|B|
那么 B*=|B|B^-1
将B=|A|A^-1代入上式则可:
B*=|A|^(n-2) A

* n-1 * * * n-2
A =A B =(B ) =A

线性代数伴随矩阵A是n阶可逆矩阵,B是A的伴随矩阵,则B的伴随矩阵是什么? 伴随矩阵是可逆矩阵?线性代数 一道大学线性代数可逆矩阵题设A为m阶可逆矩阵,B为n阶可逆矩阵,C为n x m 矩阵.证明:分块矩阵D=(O AB C)是可逆矩阵,并求D的逆矩阵及伴随矩阵 证明 线性代数 线性相关 (6)设 A 是 n 阶可逆矩阵,A*是 A 的伴随矩阵,证明(A*)^(-1)=(A^(-1))* 线性代数 考研:A、B 是n阶矩阵,E-AB可逆,证E-BA可逆. 线性代数题 已知是4阶矩阵,A*是A的伴随矩阵,若A*的特征值是,1 -1 2 4则不可逆的矩阵是线性代数题已知是4阶矩阵,A*是A的伴随矩阵,若A*的特征值是,1 -1 2 4则不可逆的矩阵是:( )(A);A-E (B); 2A-E (C) 线性代数,已知A,B都是n阶矩阵,E-AB是可逆矩阵,怎么证明E-BA也可逆啊? 大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A 线性代数问题:1.A^*是可逆4阶矩阵A的伴随矩阵,R(A)=1,r(A^*)= 2.n阶矩阵A可逆,其标准形是什么请详细说说上题,并说说伴随矩阵,可逆,秩三者之间有什么关系,线性代数问题:1.A^*是可逆4阶矩 线性代数矩阵的证明题设n阶可逆方阵A的伴随矩阵是B,证明|B|=|A|*(n-1) 后面的是指数n-1 设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1 线性代数初学者:分块矩阵的伴随矩阵题目设n阶矩阵A和s阶矩阵B可逆,求 矩阵 A O ^-1 ( ) C B 不怎么会打,就是求它的逆矩阵 线性代数问题.已知n阶方阵A,B,A^2+AB+B^2=0,求证A为可逆矩阵的充要条件是B为可逆矩阵 A是n阶矩阵,行列式|A|=2,若矩阵A +E不可逆,则矩阵A的伴随矩阵A*必有特征值? 一道线性代数可逆证明已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 证明:设A是n阶可逆矩阵,证明:(1)A的伴随矩阵的逆矩阵=A逆矩阵的伴随矩阵(2) (A*)*=|A|的n-2乘以A 线性代数,A是可逆矩阵,E是n阶单位矩阵,为什么||A|E|=|A|^n?