某工厂拟建一座平面图(如图所示)为矩形且面积为200m2的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 04:05:29
~g%'bHÜr(0/i/KD%CN某工厂拟建一座平面图(如图所示)为矩形且面积为200m2的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建
某工厂拟建一座平面图(如图所示)为矩形且面积为200m2的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).
(1)写出总造价y(元)与污水处理池长x(m)的函数关系式,并指出其定义域;
(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.某工厂拟建一座平面图(如图所示)为矩形且面积为200m2的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建
(1)因污水处理水池的长为 xm,则宽为200xm,总造价y=400(2x+2×200x)+248×200x×2+80×200=800(x+324x)+16000.(5分)
由题设条件 {0<x≤160<200x≤16,解得12.5≤x≤16即函数定义域为[12.5,16](7分)
(2)由(1)得 y′=800(1-324x2)(8分)
当x∈[12.5,16]时,y'<0;
故函数y=f(x)在[12.5,16]上是减函数.(10分)
∴当x=16时,y取得最小值,
此时 ymin=800(16+32416)+16000=45000(元)此时 200x=20016=12.5(13分)
综上,当污水处理池的长为16m,宽为12.5m时,总造价最低,最低为45000元.(14分)