如题,求:(1-1/2+1/3-1/4+……+1/1993-1/1994)/(1+1/1995+2+1/1996+……+997+1/2991)分母输错了……是(1/(1+1995)+1/(2+1996)……+1/(997+2991))

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 02:41:04
如题,求:(1-1/2+1/3-1/4+……+1/1993-1/1994)/(1+1/1995+2+1/1996+……+997+1/2991)分母输错了……是(1/(1+1995)+1/(2+1996)……+1/(997+2991))
xSN0TZad/ T!5Eb@ŏu`&&[{{ޞV./yc$N1`N>XƄ5

如题,求:(1-1/2+1/3-1/4+……+1/1993-1/1994)/(1+1/1995+2+1/1996+……+997+1/2991)分母输错了……是(1/(1+1995)+1/(2+1996)……+1/(997+2991))
如题,求:(1-1/2+1/3-1/4+……+1/1993-1/1994)/(1+1/1995+2+1/1996+……+997+1/2991)
分母输错了……是(1/(1+1995)+1/(2+1996)……+1/(997+2991))

如题,求:(1-1/2+1/3-1/4+……+1/1993-1/1994)/(1+1/1995+2+1/1996+……+997+1/2991)分母输错了……是(1/(1+1995)+1/(2+1996)……+1/(997+2991))
利用公式:1-1/2+1/3-1/4……+1/(2n-1)-1/2n=1/(n+1)+1/(n+2)+……1/2n
分子化简为:1/998+1/999+……+1/1994
分母=1/(2x998)+1/(2x999)+1/(2x1000)+……+1/(2x1994)
结果=2

只帮一点吧。
1-1/2+1/3-1/4+……+(1/2n-1)-1/2n
=1+1/2+1/3+1/4+……+(1/2n-1)+1/2n
-2(1/2+1/4+1/6+1/8+...+1/2n)
=1+1/2+1/3+1/4+……+(1/2n-1)+1/2n
-(1/1+1/2+1/3+1/4+...+1/n-1+1/n)
即:抵消了前n项,剩下...

全部展开

只帮一点吧。
1-1/2+1/3-1/4+……+(1/2n-1)-1/2n
=1+1/2+1/3+1/4+……+(1/2n-1)+1/2n
-2(1/2+1/4+1/6+1/8+...+1/2n)
=1+1/2+1/3+1/4+……+(1/2n-1)+1/2n
-(1/1+1/2+1/3+1/4+...+1/n-1+1/n)
即:抵消了前n项,剩下的是后n项是从1/(n+1)至1/2n
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(2n-1)+1/2n
1-1/2+1/3-1/4+……+1/205-1/206
=1/104+1/105+1/106+.....+1/205+1/206

收起