f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a,b,若a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:16:55
xJ@FG&"0Y$; 2ڂBkm)Fh4$0et+8Itù߽5m ?/Kf9egQοD?C|Ž|;49/
˃)L(6!`C֨Y) gU<@u:+tݗYGFjJs&Ҟn5:^BB'&5&ȋ*6٪5wMD"q~ѪڈȬK)
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a,b,若a
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a,b,若a如题,我知道f(x)是单调递增的,可是怎么比较bf(a)和af(b)的大小呢
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a,b,若a
令g(x)=f(x)/x
则有g'(x)=[xf′(x)-f(x)]/x^2>0
所以g(x)是增函数
所以g(a)
f(x)是定义在(0,+∞)上的递减函数f(x)是定义在(0,+∞)上的递减函数,且f(x)
f(x)是定义在(0,+∞)上的减函数,且f(x)
f(x)是定义在(0,+∞)上的减函数满足f(xy)=f(x)+f(y),如果f(x)+f(2.5-x)
f(x)是定义在(0,正无穷)上的非负可导函数且满足xf'(x)+f(x)
f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)-f(x)>0,对任意正数a,b,若a
函数f(x)是定义在(0,+∞)上的函数,f(2)=0;x>1时,f(x)
f(x)是定义在R上的偶函数,f(x)在[0,+∞)上为增函数,那么f(pai)
若f(x)是定义在R上的奇函数则f(0)=?
f(x)是定义在(0,+∞)上的增函数 (x/y)=f(x)-f(y),证明f(xy)=f(x)+f(y)
f(x)是定义在(-∞,0)u(0,+∞)上的偶函数当x>0时,f(x)=x²-x则x
若函数f(x)的定义是在(0,+∞)上的增函数,则不等式f(x)>f(8x-16)的解集为
已知函数f(x)是定义在区间(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(1/3)=1(1)求f(1)(2)若f(x)+f(2-x)
若f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y),则不等式f(x+6)-f(1/x) <2f(4)的解集是( )
已知f(x)是定义在(0,+∞)上的增函数,且f(x/y)=f(x)-f(y).若f(6)=1,解不等式f(x+3)-f(1/x)
若f(x)是定义在(0,∞)上的增函数,且f(x/y)=f(x)-f(y),若f(6)=1,解不等式f(x+3)-f(1/x)<2
已知函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且f(2)=0,解不等式f(x)<0
定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)
f(x)是定义在(0,+∞)上的可导函数,且满足xf'(x)-f(x)a