因式分解试题越多越好,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 00:05:38
因式分解试题越多越好,
xVNVJUcU b"Mȅa`Ä @87xt|$P1>ޗgvqN}ȤO~mwo!/tףsϝiN(s"-#ʓ9g$ {hBI-}hM? O220Fh2{\2%h:BGK2Kpf!m 1Ed& 2Քxz.5?N gpkn;ޔ)yrxc(8dKZ$h.=;_YYZ^lD6;9nn3p@\e UJf޹k#r^ ^0L?O&gTduZSL!W 'hx+KJ([kv B`1nv[G4t-YDuE?K*X?s-?P/B{~*ڎct4hJ6 . AfX `,xF($..YTZ90Rnm7YS ;rP 4]HJ?Z4T?Ee1LV t^dxg KMc6xwg [j' /ո!| Fc}[ |qݫ`KTO凮BQ4ԣ(O3cys\:mH_= @Whx- 85]mZk`BPp+b**I$c3#>T>BoiSdS~=P=zvE{a~ N

因式分解试题越多越好,
因式分解试题
越多越好,

因式分解试题越多越好,
例1 分解因式:
(1)x2-3xy-10y2+x+9y-2;
(2)x2-y2+5x+3y+4;
(3)xy+y2+x-y-2;
(4)6x2-7xy-3y2-xz+7yz-2z2.
解 (1)
原式=(x-5y+2)(x+2y-1).
(2)
原式=(x+y+1)(x-y+4).
(3)原式中缺x2项,可把这一项的系数看成0来分解.
原式=(y+1)(x+y-2).
(4)
原式=(2x-3y+z)(3x+y-2z).
说明 (4)中有三个字母,解法仍与前面的类似.
2.求根法
我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如
f(x)=x2-3x+2,g(x)=x5+x2+6,…,
当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)
f(1)=12-3×1+2=0;
f(-2)=(-2)2-3×(-2)+2=12.
若f(a)=0,则称a为多项式f(x)的一个根.
定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.
根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.
对于二次三项式ax2+bx+c,将a和c分别分解撑两个因数的乘积,a=a1•a2,c=c1•c2,且满足b=a1•c2+a2•c1,往往写成十字的形式,将二次三项式进行分解.
例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为
2x2-(5+7y)x-(22y2-35y+3),
可以看作是关于x的二次三项式.
对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为

-22y2+35y-3=(2y-3)(-11y+1).
再利用十字相乘法对关于x的二次三项式分解
所以
原式=〔x+(2y-3)〕〔2x+(-11y+1)〕
=(x+2y-3)(2x-11y+1).
上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,
它表示的是下面三个关系式:
(x+2y)(2x-11y)=2x2-7xy-22y2;
(x-3)(2x+1)=2x2-5x-3;
(2y-3)(-11y+1)=-22y2+35y-3.
这就是所谓的双十字相乘法.