已知命题p:“任意x∈[1,2],x²-a≥0”,命题q:“存在x∈R,使x²+2ax+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:43:10
已知命题p:“任意x∈[1,2],x²-a≥0”,命题q:“存在x∈R,使x²+2ax+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是
xQN@ڐhb!Эq1~)aY!ADI< KۖU;ml&3{Ω(ۨ6a%K)rELD6Rzs9-%CdïʯÏ:|h6/)r7ᔤ QbǨTZ%F9Ȋċ+.I!qa]~.ӍIw+$q4F+' *r(I꼣R||3cxXh08Z"!EѾ1ZfhF+oi*t{Ct%9+eI7ڊ~ GPXJ 0&7y[(Ӈlg׻rž;¨FހnPo.~KIPFh){hFd

已知命题p:“任意x∈[1,2],x²-a≥0”,命题q:“存在x∈R,使x²+2ax+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是
已知命题p:“任意x∈[1,2],x²-a≥0”,命题q:“存在x∈R,使x²+2ax+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是

已知命题p:“任意x∈[1,2],x²-a≥0”,命题q:“存在x∈R,使x²+2ax+2-a=0”,若命题“p且q”是真命题,则实数a的取值范围是
即两个都是真命题,x²≥a,a应该小于等于其最小值,即a≤1
命题q:△≥0,解得a≤-2或a≥1
合并a≤-2

a<=-2

这个题很简答
也就是p和q都成立
p成立:x≥√a
q成立:(2a)²-4*(2-a)≥0
联立求解即可

P:A小于等于1
Q:(2A)方-4(2-A)大于等于0,A大于等于1或A小于等于-2
则P且Q:A=1 并 A小于等于-2