已知函数y=2sin(3x+π/3),x属于R当x属于[-2π/9,π/6]时,求函数的最大值与最小值

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 01:21:46
已知函数y=2sin(3x+π/3),x属于R当x属于[-2π/9,π/6]时,求函数的最大值与最小值
x){}K}6uCQqfq}cM=td(3Z(e$bMߦlcDY-4<]iÞ';@ @MR>Q@Rb~

已知函数y=2sin(3x+π/3),x属于R当x属于[-2π/9,π/6]时,求函数的最大值与最小值
已知函数y=2sin(3x+π/3),x属于R
当x属于[-2π/9,π/6]时,求函数的最大值与最小值

已知函数y=2sin(3x+π/3),x属于R当x属于[-2π/9,π/6]时,求函数的最大值与最小值
x∈[-2π/9,π/6]
3x+π/3∈[-π/3,5π/6]
sin(3x+π/3)∈[-√3/2,1]
2sin(3x+π/3)∈[-√3,2]
函数的最大值=2
函数的最小值=-√3

把x[-2π/9,π/6]带入最大2 最小 -2