天津市新四区示范校2010-2011学年度第二学期高一年级期末联考数学试卷大题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 21:31:37
天津市新四区示范校2010-2011学年度第二学期高一年级期末联考数学试卷大题
xYnY{hnB2XDyihh&6ୈ /x14 ũS˕_a([=߷S~5;d^Y`;;lYu{9cTԸ/իsu~n˘}NcklNg ur͎k櫿Kǥ=XFSǖPҳN:o.}޶Y>/J]hfS$-I1x譲guXV?c}Nc2rh17yrtfaWg/s8t'%Ʋ705N7̸wA%0+V=zT6sqJ^ܸ=7AЋy 2c9"s+_fk:k* 's*x%ꤻG]P8KNEg&|X,սUܭ+-=Vb/FWBӄaB0kW8p[N~V3ΥYC/'vYd^^NI2ͪw $̓r[ D&竆RMnTo58ȇϙֆZşFg{V-+_ d,~$XriVlXs@ }Ș'^c?ͺP]f-|rw[x4`.0$bE(xӻl7.pqRhOHIZ-yTdD{^JG (xO2ƬjWbe>4+2, f,h{pQvYxJ,ސ0߸݅Q,Hf&sZZ}o`%6le̲ pH"gRZui-Jh<DĐE$󓜗O_`8f&V쫖W}A'r49ZI5m?bU/X9˘ݸQJ *T D~.OD"S]7(eP~!ӂ1MSS1f\ ݮA3gDW﹵H+A8al*uO 6A4\Ix ! vmԚyk!]9?4-~]錘NbqWRHL΅UΥ):}q >ÝAJ|_TQ;FR(x`hgR{yiWX!x)Y~7+He.3Tzlz PnLR8Q 9D,fg1EEk%"65Aؑk]*~ 'V%]n{0ێ~G~³ʯTVb9sK2kd 9zRw *3(=C!vڇ1?0H55t kNyȪ<)'$I *ddBgg`U͟Z;mVX Q1GF-%_<YBbpX}=s$e-Hq}W:.4衠<6BTubs>.ڗhEtw.XtPp!hg|HL"GySjjbrj"p7`gZn=v@-d%dcB!I}=%c!d=vdՋ "ٿ9HBWljYŒvtp5g1T֖^svYJu *, ?svd u ғ fD3P>'/]lퟐ|:$)kCq}0dڈ\f3zh '(S0~\k'oHV6M/M$)vpȤX*K'~s_sCˣ C/Q~ pg??.0\Mz"|BBIT|nG7%٠jpXԀGw:Uqz17UxMp Nx:,uTa}>#&"9 ^{s^iQZFeEvIIAHP(k5A_=?d

天津市新四区示范校2010-2011学年度第二学期高一年级期末联考数学试卷大题
天津市新四区示范校2010-2011学年度第二学期高一年级期末联考数学试卷
大题

天津市新四区示范校2010-2011学年度第二学期高一年级期末联考数学试卷大题
天津市新四区示范校2010---2011学年度第二学期
高一年级期末联考数学试卷
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个项是符合题目要求的.
1.函数的定义域是
 A. B. C. D.
2.下列不等式中不一定成立的是
  A. B. >0时,
 C. D. >0时,4
3.如下图,是某算法流程图的一部分,其算法的逻辑结构为
A. 顺序结构 B. 判断结构 C.条件结构 D. 循环结构
 
 

 
4.如上图是一次考试成绩的样本频率分布直方图(样本容量),若成绩不低于60分为及格,则样本中的及格人数是
  A. 6 B.36 C. 60 D.120
  
5.某公司在甲、乙、丙、丁四个地区,分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2).则完成(1)、(2)这两项调查宜采用的抽样方法依次是
A.分层抽样法,系统抽样法
   B.分层抽样法,简单随机抽样法
  C.系统抽样法,分层抽样法
  D.简单随机抽样法,分层抽样法
6.如右图给出k!s#5^u的是计算k!s#5^u的值k!s#5^u的一个程序框图,其中判断框内应填入k!s#5^u的条件是
  A. B.
  C. D.
7.若变量满足约束条件则的最大值为.
  A.4 B.3 C.2 D.1
8.设为等差数列的前项和,若,公差,则
 A.8 B.7 C. 6 D.5
9.若关于的不等式对任意恒成立,则实数的取值范围是
A.B.C.D.或
10.在锐角△ABC中,则有
  A.cos A >sin B且cos B >sin A B.cos A< sin B且cos B< sin A
  C.cos A >sin B且cos B< sin A D.cos A< sin B且cos B >sin A
二、填空题:本大题共6小题.每小题4分,满分24分.
11.在如右图所示的茎叶图中,甲、乙两组数据的中位数
分别是 、 .
12.等比数列中,则= .
13.如图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形
的一顶点,半径为正方形的边长.在这个图形上随机掷一支飞镖,它落在
扇形外正方形内的概率为__________(用分数表示).
14.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标
注数字外完全相同,现从中随机取2个小球,则取出的小球标注的数字之和
为3或6的概率是 .
15.设,若是与等比中项,则的最小值为 .
16.某产品的广告费用与销售额的统计数据如下表
广告费用(万元)4235
销售额(万元)49263954
根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售额为
____________ .
三、解答题:本大题共5小题,满分46分.解答须写出文字说明、证明过程和演算步骤.
17.(本小题满分10分)
  设全集,集合,集合
    (Ⅰ) 求集合与;
    (Ⅱ) 求、
18.(本小题满分10分)
  已知的周长为,且.
  (Ⅰ) 求边的长;
  (Ⅱ) 若的面积为,求角的度数.
19.(本小题满分12分)
  甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
  (Ⅰ) 若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
  (Ⅱ) 若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
20.(本小题满分14分)
  已知数列满足:,且
(Ⅰ) 求数列的通项公式;
(Ⅱ) 令求数列的前项和
(Ⅲ) 已知数列满足,其前项和;试比较与的大小关系
天津市新四区示范校2010—2011学年度第二学期
高一年级期末联考 数学答题纸
二、填空题: 11、 12、 13、
       14、 15、 16、
三、解答题:
17. (本小题满分10分)
18.(本小题满分10分)
19.(本小题满分12分)
20.(本小题满分14分)
天津市新四区示范校2010—2011学年度第二学期
高一年级期末联考 数学答案
一、选择题 CACDB ABDAB
二、填空题:11、 45、47 ; 12、 25 ; 13、 ; 14、 ;
     15、 ; 16、 65.5万元 .
三、解答题:
17. (本小题满分10分)∵∴
  (Ⅰ) ∵
      ∴, 不等式的解为,
      ∴ -----------------------2分
     又 ∵,∴,
     即,∴或
      --------------------------5分
  (Ⅱ) 由(Ⅰ)可知,
      ,
       --------------------------10分
18.(本小题满分10分)
(I)由题意及正弦定理,得,
    ,
    两式相减,得. -------------------------- 3分
  (II)由的面积,
     得,-------- 5分
     由余弦定理,得
  ,
     所以. ------------------------- 10分
19.(本小题满分12分)
  (Ⅰ) 从甲校和乙校报名的教师中各任选1名,所有可能的结果为:
  (甲男1,乙男)、 (甲男2, 乙男)、(甲男1, 乙女1)、(甲男1, 乙女2)、(甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男),共9种;
 选出的2名教师性别相同的结果有(甲男1,乙男)、(甲男2, 乙男)、(甲女1, 乙女1)、 (甲女1, 乙女2),共4种,
  所以选出的2名教师性别相同的概率为. ------------------------6分
   (Ⅱ) 从报名的6名教师中任选2名,所有可能的结果为:
   (甲男1,乙男)、(甲男2, 乙男)、 (甲男1, 乙女1)、(甲男1, 乙女2)、 (甲男2, 乙女1)、(甲男2, 乙女2)、(甲女, 乙女1)、(甲女, 乙女2) 、(甲女, 乙男) 、 (甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、 (乙男, 乙女1)、(乙男, 乙女2)、 (乙女1, 乙女2),共15种;
   选出的2名教师来自同一学校的所有可能的结果为:(甲男1, 甲男2)、(甲男1, 甲女)、(甲男2, 甲女)、(乙男, 乙女1)、 (乙男, 乙女2)、(乙女1, 乙女2),共6种,
    所以选出的2名教师来自同一学校的概率为.
------------------------12分
20.(本小题满分14分)
(Ⅰ) ∵
     ∴ 数列是以为首项的等差数列,
    又 知,所以
     故 ………………………… 3分
  (Ⅱ)
     而
    ∴
      又 令
        
       ∴
          
       ∴
    故 ………………………… 10分
   
    (Ⅲ) ∵ ∴
      所以
      故