(1/x)+(1/y)=5,则(2x-5xy+2y)/(x+2xy+y)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 08:33:04
(1/x)+(1/y)=5,则(2x-5xy+2y)/(x+2xy+y)=?
xRN@~+.mp!=F/7J r#ix'^?Qo0S$8ii9 E>bDA%s@)#:@5EIdJ㚊%a*% R\5$_%g ^߭Gc*IUB-r`kO):;Ypm_UGA97YJ7Yt#=zftky3r4_?Ģkh)TNxz0o1LتSĂb_M"cbGաɃf>C]0V7o!*!}1j+ "-v_.3\yBT*-ɼ}G

(1/x)+(1/y)=5,则(2x-5xy+2y)/(x+2xy+y)=?
(1/x)+(1/y)=5,则(2x-5xy+2y)/(x+2xy+y)=?

(1/x)+(1/y)=5,则(2x-5xy+2y)/(x+2xy+y)=?
1/x+1/y=(x+y)/xy=5
x+y=5xy
所以原式=[2(x+y)-5xy]/[(x+y)+2xy]
=[2(5xy)-5xy]/[(5xy)+2xy]
=5xy/7xy
=5/7

(1/x)+(1/y)=5
(x+y)/xy=5
x+y=5xy
(2x-5xy+2y)/(x+2xy+y)
=(10xy-5xy)/(5xy+2xy)
=5/7

(1/x)+(1/y)=5
分子分母上下同时除以xy:
(2x-5xy+2y)/(x+2xy+y)
=(2*5-5)/(5+2)
=5/7


(x+y)/xy=5
两侧同时乘以xy,然后移项得:
x-5xy+y=0........(1)
于是(2x-5xy+2y)/(x+2xy+y)
=[2(x-5xy+y)+5xy]/[(x-5xy+y)+7xy](将(1)代入)
=5xy/7xy
=5/7

(1/x)+(1/y)=5,两边同时乘以xy,得y+x=5xy,
(2x-5xy+2y)/(x+2xy+y)=[2(x+y)-5xy]/(x+y+2xy)
将y+x=5xy代入[2(x+y)-5xy]/(x+y+2xy),
得(10xy-5xy)/(5xy+2xy)
=5xy/7xy
=5/7