在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3(1)求证AB1平行平面BC1D(2)求四棱锥B-AA1C1D的体积1

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:33:33
在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3(1)求证AB1平行平面BC1D(2)求四棱锥B-AA1C1D的体积1
xV]oV+QN c;ָm"mRo'а +&$##P7i֦MV)#MI$UBc٨NŤrycxk_/OoUYQ}2R^bYFx{(JxeJ1jl ܉%Y8JY]-9`VV>O8 TWc2SJ!<}k`h&# >5dNJS33/&Jg3X4?9}i*N3?N]"^ 2ԭ;Ǔ$ $B,?Ec8LFDbP(b0Q( X bI!)Bo@%A\QEt!$$8%PBĂq!LX!&> IV϶*gxvlph m Z`jЈx<F8\Tɔv^}1[Vp" ,~CbK/.`i%E/+ZE 3;|j8w:H|y.n3 [$Yof)+8ljc?2\'fB fC=+IG82f`Q;,Z/ֆh՚vvXWOڊY}c^7zI_oBi(h{n  BW&.owl"הDӆYUfa#^{3Ϛ fi6n`Myq Qc6 t\m 3 Sf*x3GsAorWMg'VxqrHWð5dx*)jxrp}g'ߞ|Tpt%uVu*}[_7#q?qfiu0u#mDa7- lCEU+k{HPkA8~De*1Ar

在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3(1)求证AB1平行平面BC1D(2)求四棱锥B-AA1C1D的体积1
在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3
(1)求证AB1平行平面BC1D
(2)求四棱锥B-AA1C1D的体积
1

在三棱柱ABC-A1B1C1中,侧棱AA1垂直底面ABC,AB垂直BC,D为AC的中点,AA1=AB=2,BC=3(1)求证AB1平行平面BC1D(2)求四棱锥B-AA1C1D的体积1
第一问:做辅助线 连接B1C,交BC1于点E,连接DE,则DE是△CB1A的中位线,所以有
DE∥AB1,又因为DE在平面BC1D内,所以有AB1∥面BC1D
第二问:因为四棱锥B-AA1C1D的底面是直角梯形AA1C1D,其面积为1/2*(√13+√13/2)*(2)
=3√13/2
而点B到面AA1C1D的距离为2*3/√13=6√13/13
所以体积为(1/3)*6√13/13*3√13/2=3

告诉你一个解决这种问题的简便通用方法-------想象添加法,这很明显是一个长方体的一个角,把它放回长方体中,你会发现问题很简单,建议自己算一下,事必要躬亲。

1. 连接B1C,交BC1于点M,连接DM,在△AB1C中
D为AC的中点,M为CB1的中点,
所以DM//AB1
DM在平面平面BC1D外,AB1在平面平面BC1D内
所以AB1平行平面BC1D
2. S△ABC=3
V三棱柱=S△ABC*AA1=6
V(B-A1B1C1)=V三棱柱/3=2
V(C1-BCD)=S△BCD*AA...

全部展开

1. 连接B1C,交BC1于点M,连接DM,在△AB1C中
D为AC的中点,M为CB1的中点,
所以DM//AB1
DM在平面平面BC1D外,AB1在平面平面BC1D内
所以AB1平行平面BC1D
2. S△ABC=3
V三棱柱=S△ABC*AA1=6
V(B-A1B1C1)=V三棱柱/3=2
V(C1-BCD)=S△BCD*AA1/3=1
V(B-AA1C1D)=V三棱柱-V(B-A1B1C1)-V(C1-BCD)
=6-2-1
=3

收起


(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,
∵四边形BCC1B1是平行四边形,
∴点O为B1C的中点.
∵D为AC的中点,
∴OD为△AB1C的中位线,
∴OD∥AB1.(3分)
∵OD⊂平面BC1D,AB1⊄平面BC1D,
∴AB1∥平面BC1D.(6分)
(2)∵AA1⊥平面A...

全部展开


(1)证明:连接B1C,设B1C与BC1相交于点O,连接OD,
∵四边形BCC1B1是平行四边形,
∴点O为B1C的中点.
∵D为AC的中点,
∴OD为△AB1C的中位线,
∴OD∥AB1.(3分)
∵OD⊂平面BC1D,AB1⊄平面BC1D,
∴AB1∥平面BC1D.(6分)
(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,
∴平面ABC⊥平面AA1C1C,且平面ABC∩平面AA1C1C=AC.
作BE⊥AC,垂足为E,则BE⊥平面AA1C1C,(8分)
∵AB=BB1=2,BC=3,
在Rt△ABC中,AC=AB2+BC2=4+9=13,BE=AB•BCAC=613,(10分)
∴四棱锥B-AA1C1D的体积V=13×12(A1C1+AD)•AA1•BE(12分)=16×3213×2×613=3.
∴四棱锥B-AA1C1D的体积为3.(14分)

收起