一个三重积分题∫∫∫(x^2+y^2)dv ,积分区域为由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 04:35:52
一个三重积分题∫∫∫(x^2+y^2)dv ,积分区域为由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域
x͐ @_e G %Q! e1һĜ}f۾,?9bd`Ǩzt ׳yD5-seA1X6F=\1E,/{ Nɺ@=od c`Xr~eJO鉗+٢]NTGj;0pa!"L>"qsVT]Q6 *RI7DPl

一个三重积分题∫∫∫(x^2+y^2)dv ,积分区域为由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域
一个三重积分题
∫∫∫(x^2+y^2)dv ,积分区域为由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域

一个三重积分题∫∫∫(x^2+y^2)dv ,积分区域为由yoz面上的曲线 y^2=2z 绕z轴旋转而成的曲面与平面z=5所围成的闭区域
您够可以的了,哈哈哈,比这个好积的想来不多了

求三重积分∫∫∫(x+y+z)dxdydz 积分域x^2+y^2+z^2=0 求三重积分∫∫∫1/(x+y+z)^2,Ω:0突然发现题弄错了,是3次方。求三重积分∫∫∫1/(x+y+z)^3,Ω:0 用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o? 用球面坐标能不能解:计算三重积分I=∫∫∫(D)zdxdydz,其中D是上半球体x^2+y^2+z^2=o? 三重积分题求教∫∫∫x^2+y^2+z^2dxdydz,其中V:(x-a)^2+(y-b)^2+(z-c)^2 对X^2+Y^2求三重积分 D:x^2+y^2+z^2 高等数学计算三重积分计算三重积分下∫∫∫(D区域)(x^2+y^2)dxdydz,其中区域D由曲面z=[√(x^2+y^2)]和z=[√(8-x^2-y^2)]所围成. 计算三重积分∫∫∫zdv,其中Ω是有曲面积分z=√(2-x^2-y^2)和z=x^2+y^2 求解:三重积分∫∫∫z^2dV, 被积区域为x^2+y^2+z^2 计算三重积分题计算∫∫∫zdV,其中积分空间由曲面2z=x^2+y^2,(x^2+y^2)^2=x^2-y^2及平面z=0所围成. 问一道三重积分问题计算三重积分∫∫∫y^2dxdydz,其中Ω为锥面z=(4x^2+4y^2)^1/2与z=2所围立体 化三重积分∫∫∫f(x,y,z)dv为三次积分,其中积... 计算三重积分∫∫∫Ω(x^2+y^2)dv,Ω={(x,y,z)|(x^2+y^2)/2≤z≤2} 三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋转的曲面三重积分求体积,∫∫∫(y²+z²) dv,积分区域为由xoy面上的曲线y²=2x绕x轴旋转的曲面与平面x 求z^2的三重积分,D为x^2+y^2+z^2 求三重积分∫∫∫zdxdydz,其中积分区域为z=x^2+y^2,z=1,z=2所围区域 三重积分算圆锥体x^2+y^2 计算三重积分 ∫∫∫(x^2+y^2)dxdydz 其中D为曲面2z=x^2+y^2与z=2平面所围成的区域.