求哪位大侠,给总结下初中数学中的函数概念与性质,平面几何中四边形的概念与性质啊!

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:14:23
求哪位大侠,给总结下初中数学中的函数概念与性质,平面几何中四边形的概念与性质啊!
x}ko[G_Py/W@NЍlot@3ƃ%Kl,іd)@'=u(' v`;d=N:uyUώ'ͳJQ9Sg]{{>To{}v0YlV_m5ۇOᕳYhg/-UOԞoWS__[ {׮ ]㪥Agk}p!;{a[tRw=OdpT~v0SY:l?Z!}6xkZ|wV0widJ兂 =?FB 볃MH|p)<D /X ];[Hc]m_;Qwbr~qv*K!eГ0fߕgm!s.-ുc5\P}RࣈA*1 '<й~Mѐu\Bg+k{8T'F5]>`Z AzjNMV$`\eZ'0o^6o`ʅ+Uͨb $g,rմ</=03X8\B>N*vp_2T`@]ӸV ;P)jS/! {g$MpjKCOb7Q{䳝ų{yYAH= pغ=e\+iG5۹,qeY17'P X?phl:+`Y` nFMagD*;.սڣ)f{sÞB +C˕Ҁ߭[@"x(V%lsieg>c&B x2OY/“-sɘEU]NtRnr%Hja.ك/ub#0Fq}o7 Kv7ۮ4/ ա?jz fg$K'a(њ+SCgPwPo"ꝦdOIlև{o@ӹ<[e,5`g~%5ÙC|0U9YڻG9u|jQ#P*+/L `*/V`^aGK' |Bmm` |Uo-Kp{OT7C+;(6C"R9]Yw wjOp̷6 m9\ߜp.W C[C ,\Y sz6C =u%)0VyhZ@8c+/&z7&\IWKgǀ>ػc߁!Nw G6LJOHlGN|?hn!G/ C0?CD`?[݁rt l-X$ϠDj4!|2__)mh$CIF8]r FT2D4NDkzO21i(}Y?%|.TtRsE7-Q5楄?R| V94%Q.KA~K%/ꍳl{K%B?ȇbyӯUܙaz^Mװ?sSj(?{'vY]ntr9`}G'^)uv^sw ;Ooiѐ=9>i|:?Ӹ$~ ;AeB)an<0 *ͯ~ +G~ =k oZyM۠Ӏ}2MPٝsY%O_z! .3C.bxu]GϜ38s$*W>Z mm{ r HNLyu@q@u\FMgKXW|UA2_n(]KՀf| i;4(@$fh0̘66&)>B]| >Ёw;cXߌm㛉6g$R"W&)L6(4[Vu펽sns7ؓÆ&B mat:9?7$FZhq=)hBVA=<(i;8{NHtJmw@ѷ>pGSa @( ٨@V Abb7u=Ł^^Gf B-@ή-9YXe9dzHɋe,\P)ߢ(Nzyv\+L=(mczjv.Wϊk !kR![emnqB=>jTW%z7ך+] S,]`]jt:~m+m%o[6} ߌ7=ЏP@Kl'hc"RrePՂU6W(ZMAF,?̓k1M%Ʊ,\;MS l,- RDZZ2^_wEK78tsZIU m?():-@Dϛ1uq3efxVKy]+xKk23_Z" 횡o;X#20NH:$ 7 u~Oykq_75Iim||xQHk @E@:F[,CdxXt2RtD) PnK^_~Z,WRDZ URv/m-zz2.WF- /4 W6iL{r}ṇʓ*-LBDW+ñyi Gt ;\@Pq 㙒VK{L$f$Ar'u|in޽ $EmjCŭ*PLN1u7l3,\}a !kH~Fl*fNT9_pA/R_|%.u}Lu (+7Nܞ00;nr@C]讀8W#o8\F| _[td%֤t4% H{pYV](T'fAexId^vd`?hǰ 4 --5ʢUۜp)YvHD$ho}$E^Y{rYw+ߧB#tx9^ʒF܇tpLt(pof HtrWŪ6:/PgUhCE8GiJ3tzE5 *jmXGm?*#q U1pfV'RB@#'% 5Nk FdY\y^Ќm< ƦpY^`l!zN-QQaY":r|7VlUD35kzKНBYw&9' `x]ׅ,klW7?jIa;Aԇ0Ԃ i2쉐EHЃGL+UtuG] Bq$ Ji {X~9ģ>c}Qk JPPW=gӲ!| IBTlaLi.ߕHAB!( ڴnG%Z2BXEuHpqCh(jp=W:1gͺd"\2<(3 %w:*2ȴڔJfz3oV;0򫠾Rz{viuH> /#1faR,,1_ C{m2NgO\3o|ndOjM׺Y][=4㸍?j: "8@j<"Y50]Z-Q'"˜r4gw瞪xTl_`#C\2(]0 ̙l$l`MkPVU92(iƅB&5?P ʴ&hok}t:L@9"S9@Z3.VGIqw7N2mA:lotd=Wg'/Wq8d\iNBJn\H%ExIARxDxg<3ޮx.2eW7ɴ$_~qG$! zAP9Fo:Ÿ́<~]@ %uj8-xQ^CztAdz-▛k\[ y<8xFxEif".20 K=Pz=-*.|  TJy{ЭI,I54 @dL$@^՝μi3RV3Snp)7 Ps0RSeVdh*^*md *_7.gQ-hm>mE0%N5"pv\@}W ] U&,jxm0qUݜq=Yu7|7uG<[jZ$hulF] %Yqzy5FK̈ !"nbuAQST^4D;M3|JFRW?nTǫ oT/`Z`2&1*Qw:X5%ֵ>ݮzq)_(ޥZi|HbƯx3| ouv7ޫN5&XHu wR٤S4β&,kSgt%dF} "UV@OZ0j?eXPݘ¸=6)^T/X?s `K{S*.G.#ߚm)}hA X3=b>{wﰧ%'oz'Q±SbOFduBN=ĉeق79H]zCp )δ&aZD@IzO@Iߐn(~}lS{4ŁOoFMRF,=FCuݴogjLuXrb fImHM=8n݃ex;'j=#­\dv^7kdVU׫Guk|U>8$tT]ƺ=ט08yȈʂTH@2gd-J=|x>`A< p__:{0 s{FUz7U.B6L}^?pI_Mua3Az @ {poT(;w/5>ݛ8,OwcߠwAN Be&d-c(zob SУpȜwC[AUUߓM2%eQ!YE"7!HI [B!0FBӃ*Y2kkh r8UwpB#7'lRZQe2"6zތm\RF=)r(ENK{ sDS^Ɩnz|&mJzXK *_| ZA;ga'L}M'9s4& Ίox[y6஼6{-NWԔIʬU6'UB |=_9Bh Uʩ%cap o>q(YA7;DlZrfѥނ[St|xZr9Wf˅ > UyOd=B-3*aălܺ|%tz/ /, !""u3,M58YnQ)|'VcA~F?{rO2h_]}0ke3J-<ŧ@F20qKeVKp']3`x=Z]`?2ӸHSZ`qko_惹A]cط,7>و}$6/Z`sRրГZOq=_Ȼ'3_ֆ'd")7'MA`?Co1R+IqO.8xxM(rYOГBa. Fj1, s pt`$0sT|tB80*qa#@9 ?QC)g|&%ZR y%MmvĔgZfH ZEJ^FG@~( CA͆n96Rgf+@hO6-=~xFl%5TɆ//a5 g:;MY_Kŝ' ,J|+`ym! U9HE@U'qJD R u$HD&)AZݰ&%& v\%TFl{u)X7ġrPaBh +y6M<{dXybӠjo$M>$抩jO63YBeB3 ]=I_N'ܥWN-Nvי֋[ONC4{Q2LT8ҷXQla頦^@",svF.^'\dLɧj׌QTT0 OKM.i 2\{\ {(0Q_τ \?ſ́.6U0 Ls_u_9E&?ka8XiNlFHI!n"4"FՔ쥟KaI<~u~"ME|4ʞ oCOCiyTtK+0V<_f2C2&'}EEp"¥z<$ʹ`_;G\4gUa`̏~=f\LT.Xobf,X}_%N INpH79$G p si4)x7ZM*4ܬΙP9$~2Ja Fi=O !Jxif7=o+{hPIuKǰRoQ=rnC,t<F a>&y_oTNQਸ਼Ҩ+_-ۙ-xw* vJsCTz93SbV&e0.Nk.Hd]*r, ٴ;ͬ(=L }XpB{\=j{.R! ᢐD)^ ek0: ow3=۬|3L2ש2FNPRYɋ`0m?$b)I_~T9/"* s*(]KDp04dkaeJxS Vՠ:#""i44$x*֤K VIv`ҷ|96ڦI]7Dʸ[rK|}H8s $85 x~YMFUPCz P#AMuC1J5d1u"ƪ4UIlg>TΟ=| >߲D \s c ?0r[ҙl!ϒb۞'Ŭr{q%dU\mPiXt_0C D ="fprrJ1mN{RY( BH{ $*Q=~3=t$m6+$si> R/cB>M `Pr%g$v%hPœGOg_}{5ZJW LO^J/Y*`rAi)/ŋ^t5\2Ճ}fՓ{ Ը8N." B0b8Zq~ɪZDVР=sȬbqdA'+)> ')њ9B2q$p{eD&fAЛn6sϪ yQ+f+(ə+4={^-#7q0 ^-hB]fù Jk!@+3W%jŔ )k:崷IJy>p:rTX@pw SC12Z_)hdţqFO2~- mW<:.c&w$,c/aib{;&d'L2?/_4YF/$B|bXjʸWptq`z*ʹLA'W&0"շ8@$,`M} @ ˓d,">u>l`V\4%]J ctd- EkFyy +`7ْ*3-;PG+нM "$ڣ2ԧ/K|W-&29)Ƃu)PpF}UW0$~= \ݸW TMcHZ;ρ%̈@/&)AlKL(Xf%7abv3 4Bݼ_ӊ:WE1&LdP)+C ,&J́" 8>$R#Zx4h| HT3(I+{2* ,h_G?ɐĎ.To9:*ґ=O5$+=p6Ǿ eV_Dπ`e{ޘz2׻&wL䁵JqÞX}?IrQmX|g$n]#{>)(pGO͊%X1JqWv\VXbG@<<'o*Ǧ&k}#JpRZVk,W17;VňX=Xl:HYJassL%e a/DD n1MA=o39;( gE _00;Aa@AX? ʷnϷXQ*.ɸy:7&Hҷ©t;Ź&T@g4-M2x0?HJtu+1MWhalmW(=m+V |v=FH>\DΔWr'sC Bբc . Ir 4f+<* =蕁ZNɸ] VU(c+[Z9{:jZ5b(ԌͲf{two ]R+#(؏85^=ԄKNJi+y+~Oy_[;_;!Ky2QǍ8id._l'I$^?:](3_xuVbH?U$CSW˻h,o?%)Y3(W&KWLxBmZ]| Bh&hwE*(%# d_@[{jg!NE -A 7cAaGT:>~/ՅM~mdGD%m$ gJL;M&0#~~Q[_э.0JN#%h\f}nxxlbِ gZb YVI!+ ߦuc*,Dkb|[֏]Nޡ.'ݭƸx~yޏG'OЧbX.S$'vT dB6(0;4hiPG?) 0tȫjYo ɠ؝[^tc9aFߋl}Sr!J熎 FVʃ,a&je'p|q2Њ}L}%*aČ"1PW`Oѝ7pH$=unpnºZoP,vN,9F.Rk0hXkː|Ů9uPk9Mײ[ʫ֨.tjQ cF!@H3}'b$J>P@xzj?=ZE4%#k⚰FC<;D=@C^U)V'ѿNN}GyD'&⾥xp?|v־o&Ck`q՛ \T) wfq/|Qv n<6nMQ'Ө0uyw&w<9*곇V= {ERvnI9zE3^(dq1'GV.mGon)}\Q:P:n=wi!h

求哪位大侠,给总结下初中数学中的函数概念与性质,平面几何中四边形的概念与性质啊!
求哪位大侠,给总结下初中数学中的函数概念与性质,平面几何中四边形的概念与性质啊!

求哪位大侠,给总结下初中数学中的函数概念与性质,平面几何中四边形的概念与性质啊!
平行四边形
两组对边分别平行的四边形叫做平行四边形.
1、平行四边形的对边平行且相等;
2、平行四边形的对角相等;
3、平行四边形的对角线互相平分.
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、一组对边平行且相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形;
5、对角线互相平分的四边形是平行四边形;
1、夹在两条平行线间的平行线段相等;
矩 形
有一个角是直角的平行四边形叫做矩形(长方形).
1、矩形的对边平行且相等;
2、矩形的四个角都是直角;
3、矩形的对角线互相平分且相等.1、有一个角是直角的平行四边形是矩形;
2、有三个角是直角的四边形是矩形;
3、对角线相等的平行四边形是矩形.
1、直角三角形斜边上的中线等于斜边的一半.
菱 形
有一组邻边相等的平行四边形叫做菱形.
1、菱形的对边平行,四条边都相等;
2、菱形的对角相等;
3、菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;
1、有一组邻边相等的平行四边形是菱形;
2、四边都相等的四边形是菱形;
3、对角线互相垂直的平行四边形是菱形.菱形的面积等于它的两条对角线长的积的一半.
正 方 形
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.
1、正方形的对边平行,四条边都相等;
2、正方形的四个角都是直角;
3、正方形的对角线互相垂直平分且相等,并且每一条对角线平分一组对角.
1、有一组邻边相等并且有一个角是直角的平行四边形是正方形;
2、有一组邻边相等的矩形是正方形;
3、有一个角是直角的菱形是正方形;
4、即是矩形又是菱形的四边形是正方形.
中心对称
中心对称图形
1、把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称(中心对称);
2、把一个图形绕它的某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.性质:
1、关于中心对称的两个图形是全等形;
2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;
3、如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称.
1、以下图形是中心对称图形:直线、线段、平行四边形、矩形、菱形、正方形等.
2、以下图形不是中心对称图形:射线、角、三角形、等边三角形、等腰三角形等.
3、特别注意:平行四边形是中心对称图形但不是轴对称图形.
函数表示每个输入值对应唯一输出值的一种对应关系.函数f中对应输入值的输出值x的标准符号为f(x).包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域.若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数.
1.(1)任意角的概念以及弧度制.正确表示象限角、区间角、终边相同的角,熟练地进行角度制与弧度制的换算.  (2)任意角的三角函数定义,三角函数的符号变化规律,三角函数线的意义.  2.(1)同角三角函数的基本关系和诱导公式.  (2)已知三角函数值求角.  3.函数y=sinx、y=cosx、y=tanx以及y=Asin(ωx+φ)的图像和“五点法”作图、图像法变换,理解A、ω、φ的物理意义.  4.三角函数的定义域、值域、奇偶性、单调性、周期性.  5.两角和与差的三角函数、倍角公式,能正确地运用三角公式进行简单的三角函数式的化简、求值和恒等证明.  本章包括任意角的三角函数、两角和与差的三角函数、三角函数的图像和性质三部分.  三角函数是中学数学的重要内容,它是解决生产、科研实际问题的工具,又是进一步学习其他相关知识和高等数学的基础,它在物理学、天文学、测量学以及其他各种应用技术学科中有着广泛的应用.

平行四边形
两组对边分别平行的四边形叫做平行四边形。
1、平行四边形的对边平行且相等;
2、平行四边形的对角相等;
3、平行四边形的对角线互相平分。
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、一组对边平行且相等的四边形是平行四...

全部展开

平行四边形
两组对边分别平行的四边形叫做平行四边形。
1、平行四边形的对边平行且相等;
2、平行四边形的对角相等;
3、平行四边形的对角线互相平分。
1、两组对边分别平行的四边形是平行四边形;
2、两组对边分别相等的四边形是平行四边形;
3、一组对边平行且相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形;
5、对角线互相平分的四边形是平行四边形;
1、夹在两条平行线间的平行线段相等;
矩 形
有一个角是直角的平行四边形叫做矩形(长方形)。
1、矩形的对边平行且相等;
2、矩形的四个角都是直角;
3、矩形的对角线互相平分且相等。 1、有一个角是直角的平行四边形是矩形;
2、有三个角是直角的四边形是矩形;
3、对角线相等的平行四边形是矩形。
1、直角三角形斜边上的中线等于斜边的一半。
菱 形
有一组邻边相等的平行四边形叫做菱形。
1、菱形的对边平行,四条边都相等;
2、菱形的对角相等;
3、菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;
1、有一组邻边相等的平行四边形是菱形;
2、四边都相等的四边形是菱形;
3、对角线互相垂直的平行四边形是菱形。 菱形的面积等于它的两条对角线长的积的一半。

正 方 形
有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
1、正方形的对边平行,四条边都相等;
2、正方形的四个角都是直角;
3、正方形的对角线互相垂直平分且相等,并且每一条对角线平分一组对角。
1、有一组邻边相等并且有一个角是直角的平行四边形是正方形;
2、有一组邻边相等的矩形是正方形;
3、有一个角是直角的菱形是正方形;
4、即是矩形又是菱形的四边形是正方形。

中心对称
中心对称图形
1、把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称(中心对称);
2、把一个图形绕它的某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形。 性质:
1、关于中心对称的两个图形是全等形;
2、关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分;
3、如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
1、以下图形是中心对称图形:直线、线段、平行四边形、矩形、菱形、正方形等。
2、以下图形不是中心对称图形:射线、角、三角形、等边三角形、等腰三角形等。
3、特别注意:平行四边形是中心对称图形但不是轴对称图形。
函数表示每个输入值对应唯一输出值的一种对应关系。函数f中对应输入值的输出值x的标准符号为f(x)。包含某个函数所有的输入值的集合被称作这个函数的定义域,包含所有的输出值的集合被称作值域。若先定义映射的概念,可以简单定义函数为,定义在非空数集之间的映射称为函数。
1.(1)任意角的概念以及弧度制.正确表示象限角、区间角、终边相同的角,熟练地进行角度制与弧度制的换算.   (2)任意角的三角函数定义,三角函数的符号变化规律,三角函数线的意义.   2.(1)同角三角函数的基本关系和诱导公式.   (2)已知三角函数值求角.   3.函数y=sinx、y=cosx、y=tanx以及y=Asin(ωx+φ)的图像和“五点法”作图、图像法变换,理解A、ω、φ的物理意义.   4.三角函数的定义域、值域、奇偶性、单调性、周期性.   5.两角和与差的三角函数、倍角公式,能正确地运用三角公式进行简单的三角函数式的化简、求值和恒等证明.   本章包括任意角的三角函数、两角和与差的三角函数、三角函数的图像和性质三部分.   三角函数是中学数学的重要内容,它是解决生产、科研实际问题的工具,又是进一步学习其他相关知识和高等数学的基础,它在物理学、天文学、测量学以及其他各种应用技术学科中有着广泛的应用.
有什么数学疑惑来HI上在线教!
HI:19980606NICK

收起

1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平...

全部展开

1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理 四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°--------------------------------------------------------------------------------51推论 任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b)÷2 S=L×h83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d wc呁/S∕?84 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值--------------------------------------------------------------------------------101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线109定理 不在同一直线上的三点确定一个圆。110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理 一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角121①直线L和⊙O相交 d<r②直线L和⊙O相切 d=r③直线L和⊙O相离 d>r ?122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理 圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理 弦切角等于它所夹的弧对的圆周角129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+r(R>r) ④两圆内切 d=R-r(R>r) ⑤两圆内含d<R-r(R>r)136定理 相交两圆的连心线垂直平分两圆的公*弦137定理 把圆分成n(n≥3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)×180°/n140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积√3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4144弧长计算公式:L=n兀R/180145扇形面积公式:S扇形=n兀R^2/360=LR/2146内公切线长= d-(R-r) 外公切线长= d-(R+r)乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b(a^2+ab+b^2)三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根 b^2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

收起

正比例函数的概念
一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)
当K>0时(一三象...

全部展开

正比例函数的概念
一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数。
正比例函数属于一次函数,但一次函数却不一定是正比例函数。正比例函数是一次函数的特殊形式,即一次函数 y=kx+b 中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。正比例函数的关系式表示为:y=kx(k为比例系数)
当K>0时(一三象限),K越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大.
当K<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小.
[编辑本段]正比例函数的性质
1.定义域:R(实数集)
2.值域:R(实数集)
3.奇偶性:奇函数
4.单调性:当k>0时,图象位于第一、三象限,y随x的增大而增大(单调递增);当k<0时,图象位于第二、四象限,y随x的增大而减小(单调递减)。
5.周期性:不是周期函数。
6.对称轴:直线,无对称轴。
[编辑本段]正比例函数解析式的求法
设该正比例函数的解析式为 y=kx(k≠0),将已知点的坐标带入上式得到k,即可求出正比例函数的解析式。
另外,若求正比例函数与其它函数的交点坐标,则将两个已知的函数解析式联立成方程组,求出其x,y值即可。
[编辑本段]正比例函数的图像
正比例函数的图像是经过坐标原点(0,0)和定点(x,kx)两点的一条直线,它的斜率是k,横、纵截距都为0。
[编辑本段]正比例函数图像的作法
1.在x允许的范围内取一个值,根据解析式求出y值
2.根据第一步求的x、y的值描出点
3.做过第二步描出的点和原点的直线
[编辑本段]正比例函数的应用
正比例函数在线性规划问题中体现的力量也是无穷的。
比如斜率问题就取决于K值,当K越大,则该函数图像与x轴的夹角越大,反之亦然
还有,y=kx 是 y=k/x 的图像的对称轴。
①正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系. ①用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,(一定)正比例关系可以用以下关系式表示:
②正比例关系两种相关联的量的变化规律:对于比值为正数的,即y=kx(k>0),此时的y与x,同时扩大,同时缩小,比值不变.例如:汽车每小时行驶的速度一定,所行的路程和所用的时间是否成正比例?
以上各种商都是一定的,那么被除数和除数. 所表示的两种相关联的量,成正比例关系. 注意:在判断两种相关联的量是否成正比例时应注意这两种相关联的量,虽然也是一种量,随着另一种的变化而变化,但它们相对应的两个数的比值不一定,它们就不能成正比例. 例如:一个人的年龄和它的体重,就不能成正比例关系,正方形的边长和它的面积也不成正比例关系。
[编辑本段]反比例函数的定义
一般地,如果两个变量x、y之间的关系可以表示成y=k/x (k为常数,k≠0)的形式,那么称y是x的反比例函数。
因为y=k/x是一个分式,所以自变量X的取值范围是X≠0。而y=k/x有时也被写成xy=k或y=kx-¹。
[编辑本段]反比例函数表达式
y=k/x 其中X是自变量,Y是X的函数
y=k/x=k·1/x
xy=k
y=k·x^-1
y=k\x(k为常数(k≠0),x不等于0)
[编辑本段]反比例函数的自变量的取值范围
① k ≠ 0; ②一般情况下 , 自变量 x 的取值范围是 x ≠ 0 的一切实数 ; ③函数 y 的取值范围也是一切非零实数 .
[编辑本段]反比例函数图象
反比例函数的图象属于双曲线,
曲线越来越接近X和Y轴但不会相交(K≠0)。
[编辑本段]反比例函数性质
1.当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限。
2.当k>0时.在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大。
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
定义域为x≠0;值域为y≠0。
3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K|
5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点(m、n同号),那么A B两点关于原点对称。
7.设在平面内有反比例函数y=k/x和一次函数y=mx+n,要使它们有公共交点,则b²+4k·m≥(不小于)0。
8.反比例函数y=k/x的渐近线:x轴与y轴。
[编辑本段]反比例函数的应用举例
【例1】反比例函数 的图象上有一点P(m, n)其坐标是关于t的一元二次方程t2-3t+k=0的两根,且P到原点的距离为根号13,求该反比例函数的解析式.
分析:
要求反比例函数解析式,就是要求出k,为此我们就需要列出一个关于k的方程.
∵ m, n是关于t的方程t2-3t+k=0的两根
∴ m+n=3,mn=k,
又 PO=根号13,
∴ m2+n2=13,
∴(m+n)2-2mn=13,
∴ 9-2k=13.
∴ k=-2
当 k=-2时,△=9+8>0,
∴ k=-2符合条件,
【例2】直线 与位于第二象限的双曲线 相交于A、A1两点,过其中一点A向x、y轴作垂线,垂足分别为B、C,矩形ABOC的面积为6,求:
(1)直线与双曲线的解析式;
(2)点A、A1的坐标.
分析:矩形ABOC的边AB和AC分别是A点到x轴和y轴的垂线段,
设A点坐标为(m,n),则AB=|n|, AC=|m|,
根据矩形的面积公式知|m·n|=6.
【例3】如图,在 的图象上有A、C两点,分别向x轴引垂线,垂足分别为B、D,连结OC,OA,设OC与AB交于E,记△AOE的面积为S1,四边形BDCE的面积为S2,试比较S1与S2的大小.
[编辑本段]数学术语
【读音】yī cì hán shù
【解释】函数的基本概念:一般地,在一个变化过程中,有两个变量X和Y,并且对于x每一个确定的值,y都有唯一确定的值与其对应,那么我们就说X是自变量,y是x的函数。表示为y=Kx+b(其中b为任意常数,k不等于0),当b=0时称y为x的正比例函数,正比例函数是一次函数中的特殊情况。可表示为y=kx
[编辑本段]基本定义
变量:变化的量
常量:不变的量
自变量x和X的一次函数y有如下关系:
y=kx+b (k为任意不为零常数,b为任意常数)
当x取一个值时,y有且只有一个值与x对应。如果有2个及以上个值与x对应时,就不是一次函数。
x为自变量,y为因变量,k为常量,y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。即:y=kx (k为常量,但K≠0)正比例函数图像经过原点。
定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际相符合。
[编辑本段]相关性质
函数性质
1.y的变化值与对应的x的变化值成正比例,比值为k
即:y=kx+b(k≠0) (k不等于0,且k,b为常数)
2.当x=0时,b为函数在y轴上的,坐标为(0,b).
3.k为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)
形、取、象、交、减。
4.当b=0时(即 y=kx),一次函数图像变为正比例函数,正比例函数是特殊的一次函数.
5.函数图像性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图像相交;当k互为负倒数时,两直线垂直;当k,b都相同时,两条直线重合。
图像性质
1.作法与图形:通过如下3个步骤
(1)列表
(2)描点;[一般取两个点,根据“两点确定一条直线”的道理];
(3)连线,可以作出一次函数的图像——一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点分别是-k分之b与0,0与b)
2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像都是过原点。
3.函数不是数,它是指某一变化过程中两个变量之间的关系。
4.k,b与函数图像所在象限:
y=kx时(即b等于0,y与x成正比例):
当k>0时,直线必通过第一、三象限,y随x的增大而增大;
当k<0时,直线必通过第二、四象限,y随x的增大而减小。
y=kx+b时:
当 k>0,b>0, 这时此函数的图象经过第一、二、三象限。
当 k>0,b<0, 这时此函数的图象经过第一、三、四象限。
当 k<0,b>0, 这时此函数的图象经过第一、二、四象限。
当 k<0,b<0, 这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
4、特殊位置关系
当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等
当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1)
[编辑本段]表达式
解析式类型
①ax+by+c=0[一般式]
②y=kx+b[斜截式]
(k为直线斜率,b为直线纵截距,正比例函数b=0)
③y-y1=k(x-x1)[点斜式]
(k为直线斜率,(x1,y1)为该直线所过的一个点)
④(y-y1)/(y2-y1)=(x-x1)/(x2-x1)[两点式]
((x1,y1)与(x2,y2)为直线上的两点)
⑤x/a-y/b=0[截距式]
(a、b分别为直线在x、y轴上的截距)
解析式表达局限性:
①所需条件较多(3个);
②、③不能表达没有斜率的直线(平行于x轴的直线);
④参数较多,计算过于烦琐;
⑤不能表达平行于坐标轴的直线和过圆点的直线。
倾斜角:x轴到直线的角(直线与x轴正方向所成的角)称为直线的倾斜 角。设一直线的倾斜角为a,则该直线的斜率k=tg(a)
[编辑本段]常用公式
1.求函数图像的k值:(y1-y2)/(x1-x2)
2.求与x轴平行线段的中点:|x1-x2|/2
3.求与y轴平行线段的中点:|y1-y2|/2
4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)
5.求两个一次函数式图像交点坐标:解两函数式
两个一次函数 y1=k1x+b1 y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(X-x1)/(x1-x2)=(Y-y1)/(y1-y2) (其中分母为0,则分子为0)
x y
+ + 在第一象限
+ - 在第四象限
- + 在第二象限
- - 在第三象限
8.若两条直线y1=k1x+b1‖y2=k2x+b2,那么k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,那么k1×k2=-1
10.
y=k(x-n)+b就是向右平移n个单位
y=k(x+n)+b就是向左平移n个单位
口诀:右减左加(对于y=kx+b来说,只改变k)
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口诀:上加下减(对于y=kx+b来说,只改变b)
[编辑本段]相关应用
生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)
数学问题
一、确定字母系数的取值范围
例1 已知正比例函数 ,则当k<0时,y随x的增大而减小。
根据正比例函数的定义和性质,得 且m<0,即 且 ,所以 。
二、比较x值或y值的大小
例2. 已知点P1(x1,y1)、P2(x2,y2)是一次函数y=3x+4的图象上的两个点,且y1>y2,则x1与x2的大小关系是( )
A. x1>x2 B. x1根据题意,知k=3>0,且y1>y2。根据一次函数的性质“当k>0时,y随x的增大而增大”,得x1>x2。故选A。
三、判断函数图象的位置
例3. 一次函数y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( )
A. 第一象限 B. 第二象限
C. 第三象限 D. 第四象限
由kb>0,知k、b同号。因为y随x的增大而减小,所以k<0。所以b<0。故一次函数y=kx+b的图象经过第二、三、四象限,不经过第一象限。故选A .
典型例题
例1. 一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.
分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.
由题意设所求函数为y=kx+12
则13.5=3k+12,得k=0.5
∴所求函数解析式为y=0.5x+12
由23=0.5x+12得:x=22
∴自变量x的取值范围是0≤x≤22
例2 某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省?
此题要考虑X的范围
解:设总费用为Y元,刻录X张
电脑公司:Y1=8X
学校 :Y2=4X+120
当X=30时,Y1=Y2
当X>30时,Y1>Y2
当X<30时,Y1【考点指要】
一次函数的定义、图象和性质在中考说明中是C级知识点,特别是根据问题中的条件求函数解析式和用待定系数法求函数解析式在中考说明中是D级知识点.它常与反比例函数、二次函数及方程、方程组、不等式综合在一起,以选择题、填空题、解答题等题型出现在中考题中,大约占有8分左右.解决这类问题常用到分类讨论、数形结合、方程和转化等数学思想方法.
例3 如果一次函数y=kx+b中x的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9.求此函数的的解析式。

(1)若k>0,则可以列方程组 -2k+b=-11
6k+b=9
解得k=2.5 b=-6 ,则此时的函数关系式为y=2.5x—6
(2)若k<0,则可以列方程组 -2k+b=9
6k+b=-11
解得k=-2.5 b=4,则此时的函数解析式为y=-2.5x+4
【考点指要】
此题主要考察了学生对函数性质的理解,若k>0,则y随x的增大而增大;若k<0,则y随x的增大而减小。
定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数), 则称y为x的二次函
数。顶点坐标(-b/2a,(4ac-b^2)/4a)
2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,
但初中课本上都是第一个式子)
3:交点式(与x轴):y=a(x-x1)(x-x2)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大。)
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的二次函数
x1,x2=[-b±根号下(b^2-4ac)]/2a (即一元二次方程求根公式)
求根的方法还有十字相乘法和配方法
[编辑本段]二次函数的图像
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注名函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。
[编辑本段]抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时
(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的
斜率k的值。可通过对二次函数求导得到。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上
虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在
{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≥(X1+X2)/2时,Y随X的增大而增大,当a>0且X≤(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
[编辑本段]二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax^2+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax^2+bx+c=0
此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。