如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:41:08
如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程.
xSN@`qsMs RE%|"#0b%, ,0 O^|_8s#'_z.~^W?˓k.fqooֽ+%h [Uxz%N!K,>c\:'3e[M**Wѵ]LoMq#Y?}aQ)|l[mZ :ꨔ/QCWAɲ)_h#_yn{;ca,@r;8Ma5$2lajjB}{L,kUi1{Ԝjw*S(rES ̣[6r>E1J@}4MG%c:XHM5h? ӌdQW6}ىq餫Nq*㵎.=tQ_|

如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程.
如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程.

如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程.
因为过F2作垂直于x轴的直线交双曲线于点P,所以点P的横坐标为c
代入方程中:c^2/a^2-y^2/b^2=1
因为:c^2=a^2+b^2
可得:(a^2+b^2)/a^2-y^2/b^2=1
解得:|y|=b^2/a
所以|PF2|=b^2/a
因为:|F1F2|=2c,且∠PF1F2=30°
所以有:|PF2|/|F1F2|=1:√3
即是:b^2/2ac=1/√3
(c^2-a^2)/2ac=1/√3
整理得到:(√3/2)(c/a-a/c)=1
因为e=c/a
所以得到方程:(√3/2)(e-1/e)=1
解得:e=-1/√3【舍去】或e=√3
所以c=√3*a 代入c^2=a^2+b^2
解得:b/a=√2
所以双曲线的渐近线方程为:y=±√2x
回答完毕,

如图,已知F1,F2为双曲线x^2/a^2-y^2/b^2(a>0,b>0)的两个焦点,过F2作垂直于x轴的直线交双曲线于点P,且角PF1F2=30°,求双曲线的渐近线方程. 已知双曲线x^2/9-y^2=1的两个焦点为F1,F2,A是双曲线上一点,且|AF1|=5则|AF2|=多少 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2轨迹 已知双曲线的两焦点分别为F1,F2,其中F1是抛物线y^2=4*x的焦点,点A(-1,2),B(3,2)在双曲线上,求F2的轨迹? 一道双曲线题目已知双曲线 x^2/a^2 - y^2/b^2 =1 左右焦点分别为F1 、F2,过点F2作与x轴垂直的直线于双曲线一个交点为P,且角P F1 F2=30°,则双曲线的渐进线方程为_____要具体的过程 答案是±√2x 已知F1 F2分别是双曲线x^2/3-y^2/6=1已知F1,F2分别是双曲线x^2/3-y^2/6=1的左右焦点,过右焦点F2作倾斜角为30度的直线交双曲线于A,B两点,(1)求线段AB的长(2)求三角形AF1B的面积 已知双曲线x^2/a^2-y^2/b^2=1,(a>0,b>0)F1.F2为双曲线的两焦点,点p在双曲线上,求|PF1|*|PF2|的最小值 双曲线题:已知F1,F2,分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,已知F1,F2,分别为双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点,若在右支上存在点A,使得点F2到直线AF1的距离为2a,则该双曲线的离心率 双曲线 x^2/a^2-y^2/b^2=1,F1、F2为左右焦点,右支上有点P满足 |PF1|=4|PF2|,则曲线离心率的最大值为已知双曲线 x^2/a^2-y^2/b^2=1,F1、F2为左右焦点,右支上有点P满足 |PF1|=4|PF2|,则双曲线离心率的最大值为? 左右焦点分别为F1 F2△ABF1是以B为顶点的等腰三角形已知双曲线 x^2/a^2-y^2/b^2=1(a>0,b>0)的左右焦点分别为F1,F2,过F2的直线交双曲线右支于A、B两点,若△ABF1是以B为顶点的等腰三角形,且△AF1F2 已知点F1,F2是双曲线x^2/a^2-y^2/b^2=1的两个焦点,以线段F1F2为边作正三角形MF1F2.若边MF1的中点在双曲线上,则双曲线的离心率是多少 已知双曲线x^2/a^2-y^2/b^2=1的左右焦点分别是F1,F2 点p在双曲线的右支上且|PF1|=4|PF2| 则此双曲线的离心率的最大值为? 一直双曲线x^2/a^2 - y^2/b^2 =1(a>0,b>0)的左右焦点F1、F2,点Q为双曲线上一点,已知双曲线x^2/a^2 - y^2/b^2 =1(a>0,b>0)的左右焦点F1、F2,点Q为双曲线上一点,过F2做∠F1QF2角平分线的垂线,垂足为P求P轨迹 已知F1,F2分别是双曲线x^2/a-y^2/b=1的左右焦点,P为双曲线右支上的一点,如|PF1|^2/|PF2|^2=8a则双曲线的离心率的取值范围是 已知F1,F2分别是(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的圆与双曲线在第已知F1,F2分别是双曲线(x^2)/(a^)-(y^2)/(b^2)=1的左右焦点,已坐标原点O为圆心,OF1为半径的 已知双曲线的中心在原点,左右焦点F1,F2在x轴上,以A(0,√2)为圆心,1为半径的与双曲线的渐近线相切点F2与点A关于直线y=x对称(1)求双曲线的方程(2)若P为双曲线上的一个动点,PQ平分∠F1PF2,过 已知双曲线的左右焦点F1.F2,P为双曲线右支上的的任意一点,PF1,PF2长分别为m,n m²/n 最小值为8a双曲线的方程为:x²/a²-y²/b²=1已知双曲线的左右焦点F1.F2,P为双曲线右支上的的任 已知双曲线X^2/a^2-y^2/b2=1两个焦点为F1,F2.点A在双曲线第一象限上,若三角形AF1F2的面积为1,且tan