函数F(X)=-X3+3X2+9X+A在区间[2,2]上存在零点,那么实数A的取值范围这道题正确答案是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:47:45
函数F(X)=-X3+3X2+9X+A在区间[2,2]上存在零点,那么实数A的取值范围这道题正确答案是什么
xRMO@+,ihM^ M&zf^XP &Sꏱ'CO;潙ٷt TETD zڤYT$eR _2=^^WAjx'[pD-ߤNOef׼k>d9Vnhόtt1,` hXPQH83%HêC 5c8"aBĪi 6&RHTQqY%wh,܌ZZ vaRu{>E$yW-r{KZlf!Y9 PR(_3>K+эZbzLl8g؁W+3H$2(mMzSoW/5t0; b

函数F(X)=-X3+3X2+9X+A在区间[2,2]上存在零点,那么实数A的取值范围这道题正确答案是什么
函数F(X)=-X3+3X2+9X+A在区间[2,2]上存在零点,那么实数A的取值范围这道题正确答案是什么

函数F(X)=-X3+3X2+9X+A在区间[2,2]上存在零点,那么实数A的取值范围这道题正确答案是什么
[-2,2]吧?
-x^3+3x^2+9x+A=0
A=x^3-3x^2-9x=g(x)
g'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)=0, 得极值点x=-1, 3
g(-1)=-1-3+9=5为极大值,也为[-2,2]内的最大值
极小值点x=3不在区间[-2,2]内,最小值在端点取得.又g(-2)=-8-12+18=-2, g(2)=8-12-18=-22
因此最小值为-22
故-22=

[-2,2]吧?
-x^3+3x^2+9x+A=0
A=x^3-3x^2-9x=g(x)
g'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)=0, 得极值点x=-1, 3
g(-1)=-1-3+9=5为极大值,也为[-2,2]内的最大值
极小值点x=3不在区间[-2,2]内,最小值在端点取得。又g(-2)=-8-12+18=-2,...

全部展开

[-2,2]吧?
-x^3+3x^2+9x+A=0
A=x^3-3x^2-9x=g(x)
g'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)=0, 得极值点x=-1, 3
g(-1)=-1-3+9=5为极大值,也为[-2,2]内的最大值
极小值点x=3不在区间[-2,2]内,最小值在端点取得。又g(-2)=-8-12+18=-2, g(2)=8-12-18=-22
因此最小值为-22
故-22=

收起