已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:31:11
已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是
xTN@=fl-?``cA"\41(01$4& |[/8;ە$r7͛L}ڇ t)g6~0Mf@ 5OD%^/8 5 5#HU[D{QkdžSVay %W^UEJq2Tjg-K>!/ L&Q}5)+T.MLr0Q 靎)n5)ܐ ܶeR

已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是
已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是

已知tanα=-1/2 则(1+2sinα*cosα)/(sin²α-cos²α)的值是
sinα/cosα=tanα=-1/2
cosα=-2sinα
代入恒等式sin²α+cos²α=1
sin²α=1/5
cos²α=4/5
sinαcosα=sinα(-2sinα)
=-2sin²α
=-2/5
所以代入
原式=-1/3

(1+2sinα*cosα)/(sin²α-cos²α)
=(1+sin2a)/(-cos2a)
万能公式:因为tanα=-1/2
sin2α=2tan(α)/[1+tan^2(α)]=-1/(5/4)=-4/5
cos2α=[1-tan^2(α)]/[1+tan^2(α)] =3/5
所以(1+sin2a)/(-cos2a)
=(1-4/5)/(-3/5)
=-1/3

(1+2sinα*cosα)/(sin²α-cos²α)
=(sin²α+cos²α+2sinα*cosα)/(sin²α-cos²α)
=(sinα+cosα)²/[(sinα+cosα)(sinα-cosα)]
=(sinα+cosα)/(s...

全部展开

(1+2sinα*cosα)/(sin²α-cos²α)
=(sin²α+cos²α+2sinα*cosα)/(sin²α-cos²α)
=(sinα+cosα)²/[(sinα+cosα)(sinα-cosα)]
=(sinα+cosα)/(sinα-cosα)
=(tanα+1)/(tanα-1)
=(-1/2+1)/(-1/2-1) (已知tanα=-1/2)
=-1/3

收起