几道数学题,很快,平方差公式计算,9.8*10.225又1/5*24又4/5100^2-99^2+98^2-97^2+96^2-95^2+……+2^2-1^2分解因式,2a^3-8ax^4-16(a+b)^2-4b^21/2x^4y^2-1/8x^2y^49x^2-16(a+b)^2(x+y)^3(x-y)-(x+y)(x-y)^325(x-2y)^3+4(2y-x)81a^5b^5-ab

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 03:06:25
几道数学题,很快,平方差公式计算,9.8*10.225又1/5*24又4/5100^2-99^2+98^2-97^2+96^2-95^2+……+2^2-1^2分解因式,2a^3-8ax^4-16(a+b)^2-4b^21/2x^4y^2-1/8x^2y^49x^2-16(a+b)^2(x+y)^3(x-y)-(x+y)(x-y)^325(x-2y)^3+4(2y-x)81a^5b^5-ab
xT͎0~nRT<ďei9wY)[0I?H{F4|qUWگN_i{ec><ٽ{3ճ" o϶2cPT45 6uAhAhN(GtЗOwx dQB#+I2 @ 4F隼ռa&j0M9 UY!+ [-Gɩ]( {/!:w8X[ uǼ#SW{J+?ʾ`lVtY=d*ch9YOPHʻZ|r|QB#9 i@ DD cƨT^Z\k R#]p`hx\ⱄӚKՒxA:c1Y$b]^B,\Zl>5 W#$u+xKB&R*FVH#K Jb1^p j:Z9uV !EBYE\\^@T\8A! %:ӪnHxOoA-wCq(p;EZWSdY^04"exc/bI:

几道数学题,很快,平方差公式计算,9.8*10.225又1/5*24又4/5100^2-99^2+98^2-97^2+96^2-95^2+……+2^2-1^2分解因式,2a^3-8ax^4-16(a+b)^2-4b^21/2x^4y^2-1/8x^2y^49x^2-16(a+b)^2(x+y)^3(x-y)-(x+y)(x-y)^325(x-2y)^3+4(2y-x)81a^5b^5-ab
几道数学题,很快,
平方差公式计算,
9.8*10.2
25又1/5*24又4/5
100^2-99^2+98^2-97^2+96^2-95^2+……+2^2-1^2
分解因式,
2a^3-8a
x^4-16
(a+b)^2-4b^2
1/2x^4y^2-1/8x^2y^4
9x^2-16(a+b)^2
(x+y)^3(x-y)-(x+y)(x-y)^3
25(x-2y)^3+4(2y-x)
81a^5b^5-ab

几道数学题,很快,平方差公式计算,9.8*10.225又1/5*24又4/5100^2-99^2+98^2-97^2+96^2-95^2+……+2^2-1^2分解因式,2a^3-8ax^4-16(a+b)^2-4b^21/2x^4y^2-1/8x^2y^49x^2-16(a+b)^2(x+y)^3(x-y)-(x+y)(x-y)^325(x-2y)^3+4(2y-x)81a^5b^5-ab
9.8*10.2
=(10-0.2)(10+0.2)
=100-0.04
=99.96
25又1/5*24又4/5
=(25+1/5)(25-1/5)
=25^2-(1/5)^2
=625-0.04
=624.96
100^2-99^2+98^2-97^2+96^2-95^2+……+2^2-1^2
=(100+99)(100-99)+(98+97)(98-97).+(2+1)(2-1)
=199+195+191+.+3
=(199+3)*(199-3)/2
=202*98
=19796
2a^3-8a
=2a(a^2-4)
=2a(a+2)(a-2)
x^4-16
=x^4-4^2
=(x^2+4)(x^2-4)
=(x^2+4)(x+2)(x-2)
(a+b)^2-4b^2
=(a+b+2b)(a+b-2b)
=(a+3b)(a-b)
1/2x^4y^2-1/8x^2y^4
=1/2x^2y^2(x^2-1/4y^2)
=1/2x^2y^2(x+1/2y)(x-1/2y)
9x^2-16(a+b)^2
=(3x)^2-[4(a+b)]^2
=[3x-4(a+b)][3x+4(a+b)]
=(3x-4a-4b)(3x+4a+4b)
(x+y)^3(x-y)-(x+y)(x-y)^3
=(x+y)(x-y)[(x+y)^2-(x-y)^2]
=(x+y)(x-y)(x+y+x-y)(x+y-x+y)
=(x+y)(x-y)*2x*2y
=4xy(x+y)(x-y)
25(x-2y)^3+4(2y-x)
=(x-2y)[25(x-2y)^2-4]
=(x-2y)[(5(x-2y)+2][5(x-2y)-2]
81a^5b^5-ab
=ab[81a^4b^4-1]
=ab[(3ab)^4-1]
=ab[(3ab)^2+1][(3ab)^2-1]
=ab[(3ab)^2+1][(3ab+1)(3ab-1)]