若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?根据正弦定理 由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB 得到 a²-c²=√2ab-b² 根据余弦定理 cosC=(a²+b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 19:47:24
若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?根据正弦定理 由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB 得到 a²-c²=√2ab-b² 根据余弦定理 cosC=(a²+b
若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?
根据正弦定理
由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB
得到 a²-c²=√2ab-b²
根据余弦定理
cosC=(a²+b²-c²)/2ab=√2/2
故 角C=45度
所以 S=(1/2)absinC=2R²sinAsinBsinC
=√2R²sinAsinB
根据两角正弦积化和的公式
S=√2R²sinAsinB=(√2R²/2)[cos(A-B)-cos(A+B)]
=(√2R²/2)[cos(A-B)+cosC]
=(√2R²/2)[cos(A-B)+√2/2]
≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2
所以当A=B的时候
三角形ABC的面积的最大值是[(√2+1)R²]/2
当A=B的时候 三角形ABC的面积的最大值是[(√2+1)R²]/2 没看懂,
若三角形ABC内接于半径为R的圆,且2R(sin^2A-sin^2C)=(根号2a-b)sinB,求三角形的最大面积?根据正弦定理 由2R[(sinA)²-(sinC)²]=(√2*a- b)*sinB 得到 a²-c²=√2ab-b² 根据余弦定理 cosC=(a²+b
cos(A-B),当A-B=0时,取得最大值1
所以,S==(√2R²/2)[cos(A-B)+√2/2]≤(√2R²/2)[1+√2/2]=[(√2+1)R²]/2