设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!A.有可逆矩阵P,Q使得PBQ=A B.有可逆矩阵P,使得P^-1ABP=BAC.有可逆矩阵P,使得P^-1B^2P=A^2D.有正交矩阵P,使得P^-1AP=P^TAP=B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 15:14:44
设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!A.有可逆矩阵P,Q使得PBQ=A B.有可逆矩阵P,使得P^-1ABP=BAC.有可逆矩阵P,使得P^-1B^2P=A^2D.有正交矩阵P,使得P^-1AP=P^TAP=B
xRN@I2.5 ĸ!D" VyѠК@)?3Ӯrf2ws3L, zϮ eݕ euS,Ƨ}S tc+䥄b]k@v1CW!{=f@+VrCjE  ?sк3ZdWO&-*g3;-KxH2QA*F{86P㠢r~ nnLinSO1T" y9(ؐ@k2h(UlXp:KRAB~6YM+- CcLa_3y1H&3 2tt>y

设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!A.有可逆矩阵P,Q使得PBQ=A B.有可逆矩阵P,使得P^-1ABP=BAC.有可逆矩阵P,使得P^-1B^2P=A^2D.有正交矩阵P,使得P^-1AP=P^TAP=B
设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!
A.有可逆矩阵P,Q使得PBQ=A
B.有可逆矩阵P,使得P^-1ABP=BA
C.有可逆矩阵P,使得P^-1B^2P=A^2
D.有正交矩阵P,使得P^-1AP=P^TAP=B

设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!A.有可逆矩阵P,Q使得PBQ=A B.有可逆矩阵P,使得P^-1ABP=BAC.有可逆矩阵P,使得P^-1B^2P=A^2D.有正交矩阵P,使得P^-1AP=P^TAP=B
A.因为A,B可逆,故秩相同为n,所以等价
B.取P=A即可
C.这个不对吧.可逆矩阵的2次幂都相似?错的.
D.显然错误,A,B不一定相似.可简单举出反例
对角矩阵 diag(1,2,3) 与 diag(2,3,4) 是对称可逆矩阵,但它们不相似
因为相似矩阵的特征值相同.

设A,B为n阶可逆矩阵,则下列结论错误的是 A,|AB|AB一定可逆 B,A十B一定可逆 c,A*一设A,B为n阶可逆矩阵,则下列结论错误的是A,|AB|AB一定可逆B,A十B一定可逆c,A*一定可逆D,r(AB)=n 设A,B为n阶是对称可逆矩阵,则错误的是(D)请问如何ABC为何成立,D为何错误!A.有可逆矩阵P,Q使得PBQ=A B.有可逆矩阵P,使得P^-1ABP=BAC.有可逆矩阵P,使得P^-1B^2P=A^2D.有正交矩阵P,使得P^-1AP=P^TAP=B 设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵 设A,B是n阶正定矩阵,则AB是:A.实对称矩阵.B.正定矩阵.C.可逆矩阵.D.正交矩阵 设A为n阶不可逆方阵,则( )A |A |=0 ; B、A=0 ;C、Ax=0只有零解; D、 必为可逆方阵设A,B为同阶对称矩阵,则( )不一定是对称矩阵.A、A-B对称; B、AB对称 ;C、A`+B 对称 ; D、A+B&ac 线性代数中关于正定矩阵的一道题设A是n阶实对称矩阵,AB+B的转置乘A是正定矩阵,证明A可逆. 设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵. 设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵. 设A是n阶实对称阵,AB+B的转置A是正定矩阵,证明A是可逆矩阵 设A为n阶对称矩阵,B是n阶反对称矩阵,证明AB为反对称矩阵的充分必要条件是AB=BA 设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵设A为n阶正定矩阵,矩阵B与A相似,则B必为 A,实对称矩阵 B正定矩阵 C可逆矩阵 D正交矩阵 设A是n阶实对称证明a可逆的充分必要条件是存在n阶实矩阵b使得AB+B转置A是正定 设A是n阶反对称矩阵(A^T=-A),如A可逆,则n必是偶数则n必为偶数怎么证明? A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵 A为n阶可逆对称矩阵,B为n阶对称矩阵,当I+AB可逆时,证明:(I+AB)的逆乘A为对称矩阵 设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵 设A为n阶方阵,且A^2=0,则下列选项中错误的是A.A可逆 B.A+E可逆 C.设A为n阶方阵,且A^2=0,则下列选项中错误的是A.A可逆 B.A+E可逆 C.A-E可逆 D.A+2E可逆 设A是n阶实对称矩阵 P是n阶可逆矩阵 ,已知n维列向量β是属于特征值λ的特征限量,则矩阵(P^( -1) AP)倒置的上面问题只显示了一半设A是n阶实对称矩阵 P是n阶可逆矩阵 已知n维列向量β是属于特征