谈谈物理学是如何影响现代文明的?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 03:28:53
谈谈物理学是如何影响现代文明的?
x|Yo#W_ѼU(g3 ˰va޲vmwvDIZ2%.%3F)|$E0HTqgwνN9vNͩC^RӽΪTJN{} {s_?<ȧ_凧vT/ow*QI'WT{ӹ7usح=`Fl\urvXՃN~\±s4*^?WE]T1ܲ[UiUq={e-|*w,k xڹJHWoW?y Mrv"$ps=^wڞBw{Ma&[ ` UQ݈:78&f;skf^=t06`+}ouH%;#j2* >Xl驩9D֠#jԢ1'_S3y=ul^T@]#]=5XZj{+a1T zԸYu6kD{锪*~n(;]V_+ZuJg:k 62粆Qzsu="[gUZ$ntz8T-`TN:]%sK9C aWW X"5 sCvuq%a9>'ZWtX*Z#UTdNo)\OI TdjUŘ^s>yS}Ѳ[y7|VR똒`OWp?&!̪f^`I^$R+;[Uz-B3@G0 @^?#8kU %\cߗ GSD _XzPe䃝c `ʕ1}*yү >2B zˆI R*u +kF9ϘN_!| eR4ۮVP(mX2lc ~Jw *P 2r35iTLX6\J:X1:q^YR y\BC.;VhNt:<:8 ! Y*y# n \̮UrJDBDy% zsZ^\k01I"jlEfE+M\8^U =1SSBnrg e\, X#8aqLRK Uykx Ȉr%RQ\](?0I8YtHS*eDgxTrY-R"gF%HJˀ iv&iqG7U|,@KP,;UȏWDNkncj9W~?/?~1V7a@Knf)~#Kd9G`n@8@ l]OgH 5t?,uq /&D(N1r%8rMk!sC0I2arR5ջ49f\ngWk"* WoWhrM+f*wD: gsy2 ea{}Fri.\Lc)*5hሎԘ 4 6,!sU+:CFz7 ^J@dD5sUՀ87`s-]D-u?ѢqSɒnf J{3%F64ުK4) Gn0yUۋ6?2wOd=D-' ׹V{^ Uo?W0_?'zrA"iMfrb/c\9d\dԓo'Oɷz㛯Wfԃ F'}oO7IBʪ_'?<|wS^Vb.D_ gf˽S焿n8*y~wkmyNA&d  _,+5V1=: xdS2l;8qF!ɨ,14< )!bZNjNkwJ}H[s[\[)[ヨOSvd 1+9Rfg׈ۀ[(@2|vX==(mG2}|rc$CåcX" =4 _c]Yhb%'4&0 ZGm-Z: S<)h?nwU<4g_sUDD JHG)h@H[IaVJCixdd|ݻH R=&X` Hc{Kctr׸^bNfwFCHz͍HTiSI:0f/"CP: -\#Na ̃~v]aҷgft%af*m%$-ϱ; LAV, A" za(w4(j*ئQ$DFgBҵ4'+Z\5Q9]h3"5'+JV[ x/xߏA"Mԗ D%jjmB/`^} i#GtzJfq+C~V aֶNzC FyKf,Жr+DWzus۩[+ۉ , F@-乏fWQ:ȰVbeʙ~:ED w=*̑S^ktv+x"rU ppR^sb df!GRp%4*i= 0u:(u;p . #F(0n sVg0buΨ9G?s.3,%؈zm(2ve|wyMsncر43/!>r639A;XOF&-߅I)\g)`;=KVAf˦R }6S5L,!PpOƒ܃l&om36^#/Nk٢)(qG7 vF_8#Ϥ\hð!8aU<\LI@ӊRTϹ,nxVC,RmdΣWFuK-׆V^#B /QWbFOݼKwoajpiSkJnlc9 2H!kBN7E%?= }^F9!Ɗ:Őp0 cq8[xwHK*Ie/m -o2ar>P4=% JJ,]ǾOcj]5yA\c!s׫ռ&{ ~hʁ:bQh`Sȏ0b7#dr\Tv71Hn.j(RK^-H^+Ï*]22Yk${J荢xG12tN>5&e/!dVHꟜy.+ȉLOhʚzPQ (`&DV:DP'ÔKlz|;6x0ф =ʄ5MɺEyE`5Ak'Z{BgL1|l?/w9?CMȉ3]L/)$c2#1AKag0pvkZL k~&|t_tiIxߴzP7| e:j3_Q'>t9jpNB?%y::_߇޲R!7GV?UŃC[]IK55NuDPd:$e؝5_bA/,Bi&4fsL؄PH b;]IYFٝ॑j5y+?Ñdx1 +2O-{q" N {N]Ie(h-ۧݙq}aK+Y~d5io؍b~qQD{B&b*q0|d:PVte,saxIq(|P^)%I+h"'w vꔹ};Cz )zmQ-Ab6hفJfL2n>@/θѽDxc;ޯ^'Bцct9>"Rz+o:L3V`aYZS8:኎0?!bWJ<ɂbC\ ZH$mn*§t =l'j/+IJ38Mq+4*ӃHN;n fπi2I+>y5cs҇^0xtA18z%k:9wu Q' hsÌhȚ,˗eEZiX:>Dk-zKr\Ԥ&oRֻV<.˛Dn@#nyp!.{$3WN:?] 3"/AYSo>h/ez`@ LXOSw=#;Q>s].ªY0Tۢ1d艐)H%f~5-8OZzm2"֋c=Rb|Z>Up;z;ԲuG;P?`_m4ҚRMxl<=݋.&xt2O!bHSAwqMu[7[Z A+.{A5'oJ6Wzi<[dcEú\$_NR/o^=݀7-g:CͬȄf5L.p? ;@JbVu UŐWYFjurf;\}Ry`#(>z??U%׳hfJs?蚄LTNNaN]2uR2.I#HinJߑڳ,~6RPHi9ِ@7G:`*P|\ls0}f}l9`f\ET]s7mp<+v `p~vNCf{|zuá6!z0yqɂV}TKq^=!x90nT\GZC:ߺR`}4ܿp=xUTf$i= B*@w'F1xFRn/} y@O:x~Y6_G/}K':h3a=ϧ)tG?C)g2uI0t*4F`v1,Nt^T|W |[@./c#aӭ""'(6UɘSݬ$Iux4Ԩ$7W CHB١@N6:^I-K"eGd3==c?2gWZdF~NN4q";Qw\7zҙ}L'qe<3ޑT66KH3d<|L-F=+}#[S'9B?Cݡ:6d n6YI!WՄ8MTNU3ߒ7bk7$=уk1#g3ЛT44 ݹ$eN4\M˴C6G;Wnn?/#JS #: ylf *d4mͅ3B'9>d$}Ӛ"qsɔTL܍\fqԇS뜄?CI2e~k&7Ok{M:FW6ilmG53 X##ؐfJIYfuȋVUIp#Ξ_'408qEe& -F p"fހvS^F[aE/1}1'RɛYWg^=bSFvV+ӓ(}~$Ua65p9nHOq+Fthٟ􎻥uˆ:|v#vb^r iU@tF'J7pcpC[^,_(h=Aw9PtZZa.=. !}5YXzvc5C!]J#Vƞ\ 0rcDQ2R&ڨٖ`X_@}[^TvC|$oXESj-bZmjρ; !)7/ !ץ $˟Y+m|T\hh/OOH)aGXY0``yߢB&[3͹Nw{V+ZmL\r\ZGd0 ^LJߺ5N㌈gtH@!D SןPkIlˁvc;cN\cwhlŽQ&d1NHUqxUu>0S hRW顇2=;?'O K)gx(mxsF97P"p[因Ȁt"}3]hr|e$^/OdÌ>ݕ[n4ݑlEܮXW)IW$8%0 i18uTU!2Son}:YGa,y*%C lT͝T0$ ˃p }(&:EDݰ= h{D-淠FJ!tJY$i?L9j167M73O C&PH7z#[6u uvn[Cg'ܱL{J45=5tWr!'{ˇ7uϗR˹750{d6 ׶z4<TWu:`6C|A]X_xe' uUM۩Û550̡uxoD=VM]B&zlǶpg=en8A̓eql9w_y!Qt`Hgc2%$n #[TӰ:;*|eZ|[Ta\:ŒNq#z|N/hTG2k` +J&5U_Xg&P{z^ 7q㠓=َPޖÍczrZi h-q]e1C2jڋ9cF}9UPtK:7)#6_Ԝ*gnzțRpRh@GW`=QAz yހ2iٚJ%s-^{QHo2F/Jvc* r@~kQD:DOdJup<% iym+!Udj%K4$X/RG=>jc9>JM_-ëq^Cȅ WNy/!\I>|(c[%A {)?ky59=PC6'}W:*hR`3<- ztSdFR7 O8Bn-ґW61m= U8+s݆(AAu>ۼmޫɈaSH !@.P b6) k(; W)4!ڨ~A N{3sljA5(^zo͋*_?Laj^}S^9-HAB윢bc{e\|S & -u#@[p@6c8/73Ɛ(W2n̨%ܜuJUd~~8|@W kUq3}eYl^~lBڸohg 29Ӽ u`|MN+1"0 eGt֯LBrpAF7mcPAF kJ[7|P<&/BF 7-\-XMo_'1[A5@gd⼮h$n鼼r;څmb[KjW w B[™aMy-368X

谈谈物理学是如何影响现代文明的?
谈谈物理学是如何影响现代文明的?

谈谈物理学是如何影响现代文明的?
物理(Physics)拼音:wù lǐ,全称物理学.物理学是研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的自然科学.在现代,物理学已经成为自然科学中最基础的学科之一.经过大量严格的实验验证的物理学规律被称为物理学定律.然而如同其他很多自然科学理论一样,这些定律不能被证明,其正确性只能经过反覆的实验来检验.
“物理”一词的最先出自希腊文φυσικ,原意是指自然.古时欧洲人称呼物理学作“自然哲学”.从最广泛的意义上来说即是研究大自然现象及规律的学问.汉语、日语中“物理”一词起自于明末清初科学家方以智的百科全书式着作《物理小识》.
在物理学的领域中,研究的是宇宙的基本组成要素:物质、能量、空间、时间及它们的相互作用;借由被分析的基本定律与法则来完整了解这个系统.物理在经典时代是由与它极相像的自然哲学的研究所组成的,直到十九世纪物理才从哲学中分离出来成为一门实证科学.
物理学与其他许多自然科学息息相关,如数学、化学、生物和地理等.特别是数学、化学、生物学.化学与某些物理学领域的关系深远,如量子力学、热力学和电磁学,而数学是物理的基本工具.
“物理”二字出现在中文中,是取“格物致理”四字的简称,即考察事物的形态和变化,总结研究它们的规律的意思.我国的物理学知识,在早期文献中记载于《天工开物》等书中.
从古时候起,人们就尝试着理解这个世界:为什么物体会往地上掉,为什么不同的物质有不同的性质等等.宇宙的性质同样是一个谜,譬如地球、太阳以及月亮这些星体究竟是遵循着什么规律在运动,并且是什么力量决定着这些规律.人们提出了各种理论试图解释这个世界,然而其中的大多数都是错误的.这些早期的理论在今天看来更像是一些哲学理论,它们不像今天的理论通常需要被有系统的实验证明.像托勒密(Ptolemy)和亚里士多德(Aristotle)提出的理论,其中有些与我们日常所观察到的事实是相悖的.当然也有例外,譬如印度的一些哲学家和天文学家在原子论和天文学方面所给出的许多描述是正确的,再举例如希腊的思想家阿基米德(Archimedes)在力学方面导出了许多正确的结论,像我们熟知的阿基米德定律.
在十七世纪末期,由于人们乐意对原先持有的真理提出疑问并寻求新的答案,最后导致了重大的科学进展,这个时期现在被称为科学革命.科学革命的前兆可回溯到在印度及波斯所做出的重要发展,包括:印度数学暨天文学家Aryabhata以日心的太阳系引力为基础所发展而成的行星轨道之椭圆的模型、哲学家Hindu及Jaina发展的原子理论基本概念、由印度佛教学者Dignāga及Dharmakirti所发展之光即为能量粒子之理论、由穆斯林科学家Ibn al-Haitham(Alhazen)所发展的光学理论、由波斯的天文学家Muhammad al-Fazari所发明的星象盘,以及波斯科学家Nasir al-Din Tusi所指出托勒密体系之重大缺陷.
中国物理教育史
中国物理教育史是研究中国物理教育产生、发展及其规律的教育科学.其内容可概括为两个方面:一是从物理教育的角度,反映和研究我国各个时代或历史时期物理教育的指导思想、课程设置、教学大纲、课程教材、教学理论和教学方法等的演变过程;二是从社会历史的沿革,分析和探求引起我国物理教育发展中发生这样或那样变化的原因.从而呈现我国物理教育发展过程的特点及其规律.
学习和研究中国物理教育史,具有十分重要的现实意义和深远的历史意义.分清和认识我国物理教育遗产中的精华与糟粕,可以批判地继承和借鉴前人的物理教育经验,这是改革物理教育、提高物理教学质量的基础;了解和掌握我国历次物理教育变革的历史背景、内容和产生的影响,正确认识其中成败、得失的根源,可为选择物理教育改革的方向,确定主攻的目标提供科学的依据,这是深化物理教育改革,使其适应我国历史性转变的前提.
物理学是人们对无生命自然界中物质的转变的知识做出规律性的总结.这种运动和转变应有两种.一是早期人们通过感官视觉的延伸,二是近代人们通过发明创造供观察测量用的科学仪器,实验得出的结果.物理学从研究角度及观点不同,可分为微观与宏观两部分,宏观是不分析微粒群中的单个作用效果而直接考虑整体效果,是最早期就已经出现的,微观物理学随着科技的发展理论逐渐完善.
其次,物理又是一种智能.
诚如诺贝尔物理学奖得主、德国科学家玻恩所言:“如其说是因为我发表的工作里包含了一个自然现象的发现,倒不如说是因为那里包含了一个关于自然现象的科学思想方法基础.”物理学之所以被人们公认为一门重要的科学,不仅仅在于它对客观世界的规律作出了深刻的揭示,还因为它在发展、成长的过程中,形成了一整套独特而卓有成效的思想方法体系.正因为如此,使得物理学当之无愧地成了人类智能的结晶,文明的瑰宝.
大量事实表明,物理思想与方法不仅对物理学本身有价值,而且对整个自然科学,乃至社会科学的发展都有着重要的贡献.有人统计过,自20世纪中叶以来,在诺贝尔化学奖、生物及医学奖,甚至经济学奖的获奖者中,有一半以上的人具有物理学的背景;——这意味着他们从物理学中汲取了智能,转而在非物理领域里获得了成功.——反过来,却从未发现有非物理专业出身的科学家问鼎诺贝尔物理学奖的事例.这就是物理智能的力量.难怪国外有专家十分尖锐地指出:没有物理修养的民族是愚蠢的民族!
总之物理学 对于物理学理论和实验来说,物理量的定义和测量的假设选择,理论的数学展开,理论与实验的比较是与实验定律一致,是物理学理论的唯一目标.
人们能通过这样的结合解决问题,就是预言指导科学实践这不是大唯物主义思想,其实是物理学理论的目的和结构.是概括规律性的总结,是概括经验科学性的理论认识.
物理与形而上学的关系
在不断反思形而上学而产生的非经验主义的客观原理的基础上,物理学理论可以用它自身的科学术语来判断.而不包依赖于它们可能从属于哲学学派的主张.在着手描述的物理性质中选择简单的性质,其它性质则是群聚的想象和组合.通过恰当的测量方法和数学技巧从而进一步认知事物的本来性质.实验选择后的数量存在某种对应关系.一种关系可以有多数实验与其对应,但一个实验不能对应多种关系.也就是说,一个规律可以体现在多个实验中,但多个实验不一定只反映一个规律.
对于物理学来说理论预言与现实一致与否是真理的唯一判断标准.
历届诺贝尔物理学奖获得者:
1901年 W.C.伦琴 (德国人)
发现X 射线
1902年 H.A.洛伦兹、P. 塞曼(荷兰人)
研究磁场对辐射的影响
1903年 A.H.贝克勒尔(法国人)
发现物质的放射性
P.居里、M.居里(法国人)
从事放射性研究
1904年 J.W.瑞利(英国人)
从事气体密度的研究并发现氩元素
1905年 P.E.A.雷纳尔德(德国人)
从事阴极线的研究
1906年 J.J.汤姆森(英国人)
对气体放电理论和实验研究作出重要贡献
1907年 A.A.迈克尔逊(美国人)
发明了光学干涉仪并且借助这些仪器进行光谱学和度量学的研究
1908年 G.李普曼(法国人)
发明了彩色照相干涉法(即李普曼干涉定律)
1909年 G.马克尼(意大利人)、 K . F. 布劳恩(德国人)
开发了无线电通信
O.W.理查森(英国人)
从事热离子现象的研究,特别是发现理查森定律
1910年 J.O.范德瓦尔斯(荷兰人)
从事气态和液态议程式方面的研究
1911年 W.维恩(德国人)
发现热辐射定律
1912年 N.G.达伦(瑞典人)
发明了可以和燃点航标、浮标气体蓄电池联合使用的自动节装置
1913年 H.卡麦林·昂尼斯(荷兰人)
从事液体氦的超导研究
1914年 M.V.劳厄(德国人)
发现晶体中的X射线衍射现象
1915年 W.H .布拉格、W.L.布拉格(英国人)
借助X射线,对晶体结构进行分析
1916年 未颁奖
1917年 C.G.巴克拉(英国人)
发现元素的次级X 辐射的特征
1918年 M.普朗克(德国人)
对确立量子理论作出巨大贡献
1919年 J.斯塔克(德国人)
发现极隧射线的多普勒效应以及电场作用下光谱线的分裂现象
1920年 C.E.纪尧姆(瑞士人)
发现镍钢合金的反常现象及其在精密物理学中的重要性
1921年 A.爱因斯坦(美籍犹太人)
发现了光电效应定律等
1922年 N.玻尔(丹麦人)
从事原子结构和原子辐射的研究
1923年 R.A.米利肯
从事基本电荷和光电效应的研究
1924年 K.M.G.西格巴恩(瑞典人)
发现了X 射线中的光谱线
1925年 J.弗兰克、G.赫兹(德国人)
发现原子和电子的碰撞规律
1926年 J.B.佩兰(法国人)
研究物质不连续结构和发现沉积平衡
1927年 A.H.康普顿(美国人)
发现康普顿效应(也称康普顿散射)
C.T.R.威尔逊(英国人)
发明了去雾室 ,能显示出电子穿过空气的径迹
1928年 O.W 理查森(英国人)
从事热离子现象的研究,特别是发现理查森定律
1929年 L.V.德布罗意(法国人)
发现物质波
1930年 C.V.拉曼(印度人)
从事光散方面的研究,发现拉曼效应
1931年 未颁奖
1932年 W.K.海森堡(德国人)
创建了量子力学
1933年 E.薛定谔(奥地利人)、P.A.M.狄拉克(英国人)
发现原子理论新的有效形式
1934年 未颁奖
1935年 J.查德威克(英国人)
发现中子
1936年 V.F.赫斯(奥地利人)
发现宇宙射线;
C.D.安德森(美国人)
发现正电子
1937年 C.J.戴维森(美国人)、G.P.汤姆森(英国人)
发现晶体对电子的衍射现象
1938年 E.费米(意大利人)
发现中子轰击产生的新放射性元素并发现用慢中子实现核反应
1939年 E.O.劳伦斯(美国人)
发明和发展了回旋加速器并以此取得了有关人工放射性等成果
1940年 1942年 未颁奖
1943年 O.斯特恩(美国人)
开发了分子束方法以及质子磁矩的测量
1944年 I.I.拉比(美国人)
发明了著名气核磁共振法
1945年 W.泡利(奥地利人)
发现不相容原理
1946年 P.W.布里奇曼(美国人)
发明了超高压装置,并在高压物理学方面取得成就
1947年 E.V.阿普尔顿(英国人)
从事大气层物理学的研究,特别是发现高空无线电短波电离层(阿普尔顿层)
1948年 P.M.S.布莱克特(英国人)
改进了威尔逊云雾室方法,并由此导致了在核物理领域和宇宙射线方面的一系列发现
1949年 汤川秀树(日本人)
提出核子的介子理论,并预言介子的存在
1950年 C.F.鲍威尔(英国人)
开发了用以研究核破坏过程的照相乳胶记录法并发现各种介子
1951年 J.D.科克罗夫特(英国人)、E.T.S.沃尔顿(爱尔兰人)
通过人工加速的粒子轰击原子,促使其产生核反应(嬗变)
1952年 F.布洛赫、E.M.珀塞尔(美国人)
从事物质核磁共振现象的研究并创立原子核磁力测量法
1953年 F.泽尔尼克(荷兰人)
发明了相衬显微镜
1954年 M.玻恩
在量子力学和波函数的统计解释及研究方面作出贡献
W. 博特(德国人)
发明了符合计数法,用以研究原子核反应和γ射线
1955年 W.E.拉姆(美国人)
发明了微波技术,进而研究氢原子的精细结构
P.库什(美国人)
用射频束技术精确地测定出电子磁矩,创新了核理论
1956年 W.H.布拉顿、J.巴丁、W.B.肖克利(美国人)
从事半导体研究并发现了晶体管效应
1957年 李政道、杨振宁(美籍华人)
对宇称定律作了深入研究
1958年 P.A.切伦科夫、I.E.塔姆、I.M.弗兰克(俄国人)
发现并解释了切伦科夫效应
1959年 E .G. 塞格雷、O. 张伯伦(美国人)
发现反质子
1960年 D.A.格拉塞(美国人)
发现气泡室,取代了威尔逊的云雾室
1961年 R.霍夫斯塔特(美国人)
利用直线加速器从事高能电子散射研究并发现核子
R.L.穆斯保尔(德国人)
从事γ射线的共振吸收现象研究并发现了穆斯保尔效应
1962年 L.D.兰道(俄国人)
开创了凝集态物质特别是液氦理论
1963年 E. P.威格纳(美国人)
发现基本粒子的对称性以及原子核中支配质子与中子相互作用的原理
M.G.迈耶(美国人)、J.H.D.延森(德国人)
从事原子核壳层模型理论的研究
1964年 C.H.汤斯(美国人)、N.G.巴索夫、A.M.普罗霍罗夫(俄国人)
发明微波射器和激光器,并从事量子电子学方面的基础研究
1965年 朝永振一郎(日本人)、J. S . 施温格、R.P.费曼(美国人)
在量子电动力学方面进行对基本粒子物理学具有深刻影响的基础研究
1966年 A.卡斯特勒(法国人)
发现和开发了把光的共振和磁的共振合起来,使光束与射频电磁发生双共振的双共振法
1967年 H.A.贝蒂 (美国人)
以核反应理论作出贡献,特别是发现了星球中的能源
1968年 L.W.阿尔瓦雷斯(美国人)
通过发展液态氢气泡和数据分析技术,从而发现许多共振态
1969年 M.盖尔曼(美国人)
发现基本粒子的分类和相互作用
1970年 L.内尔(法国人)
从事铁磁和反铁磁方面的研究
H.阿尔文(瑞典人)
从事磁流体力学方面的基础研究
1971年 D.加博尔(英国人)
发明并发展了全息摄影法
1972年 J. 巴丁、L. N. 库柏、J.R.施里弗(美国人)
从理论上解释了超导现象
1973年 江崎玲于奈(日本人)、I.贾埃弗(美国人)
通过实验发现半导体中的“隧道效应”和超导物质
B.D.约瑟夫森(英国人)
发现超导电流通过隧道阻挡层的约瑟夫森效应
1974年 M.赖尔、A.赫威斯(英国人)
从事射电天文学方面的开拓性研究
1975年 A.N. 玻尔、B.R.莫特尔森(丹麦人)、J.雷恩沃特(美国人)
从事原子核内部结构方面的研究
1976年 B. 里克特(美国人)、丁肇中(美籍华人)
发现很重的中性介子– J /φ粒子
1977年 P.W. 安德林、J.H. 范弗莱克(美国人)、N.F.莫特(英国人)
从事磁性和无序系统电子结构的基础研究
1978年 P.卡尔察(俄国人)
从事低温学方面的研究
A.A.彭齐亚斯、R.W.威尔逊(美国人)
发现宇宙微波背景辐射
1979年 S. L.格拉肖、S. 温伯格(美国人)、A. 萨拉姆(巴基斯坦)
预言存在弱中性流,并对基本粒子之间的弱作用和电磁作用的统一理论作出贡献
1980年 J.W.克罗宁、V.L.菲奇(美国人)
发现中性K介子衰变中的宇称(CP)不守恒
1981年 K.M.西格巴恩(瑞典人)开发出高分辨率测量仪器
N.布洛姆伯根、A.肖洛(美国人)对发展激光光谱学和高分辨率电子光谱不做出贡献
1982年 K.G.威尔逊(美国人)
提出与相变有关的临界现象理论
1983年 S.昌德拉塞卡、W.A.福勒(美国人)
从事星体进化的物理过程的研究
1984年 C.鲁比亚(意大利人)、S. 范德梅尔(荷兰人)
对导致发现弱相互作用的传递者场粒子W±和Z 0的大型工程作出了决定性贡献
1985年 K. 冯·克里津(德国人)
发现量了霍耳效应并开发了测定物理常数的技术
1986年 E.鲁斯卡(德国人)
在电光学领域做了大量基础研究,开发了第一架电子显微镜
G.比尼格(德国人)、H.罗雷尔(瑞士人)
设计并研制了新型电子显微镜——扫描隧道显微镜
1987年 J.G.贝德诺尔斯(德国人)、K.A.米勒(瑞士人)
发现氧化物高温超导体
1988年 L.莱德曼、M.施瓦茨、J.斯坦伯格(美国人)
发现μ子型中微子,从而揭示了轻子的内部结构
1989年 W.保罗(德国人)、H.G.德默尔特、N.F.拉姆齐(美国人)
创造了世界上最准确的时间计测方法——原子钟,为物学测量作出杰出贡献
1990年 J.I.弗里德曼、H.W.肯德尔(美国人)、R.E.泰勒(加拿大人)
通过实验首次证明了夸克的存在
1991年 P.G.热纳(法国人)
从事对液晶、聚合物的理论研究
1992年 G.夏帕克(法国人)
开发了多丝正比计数管
1993年 R.A.赫尔斯、J.H.泰勒(美国人)
发现一对脉冲双星,为有关引力的研究提供了新的机会
1994年 BN.布罗克豪斯(加拿大人)、C.G.沙尔(美国人)
在凝聚态物质的研究中发展了中子散射技术
1995年 M.L.佩尔、F.莱因斯(美国人)
发现了自然界中的亚原子粒子:Υ轻子、中微子
1996年 D. M . 李(美国人)、D.D.奥谢罗夫(美国人)、R.C.理查森(美国人)
发现在低温状态下可以无摩擦流动的氦- 3
1997年 朱棣文(美籍华人)、W.D.菲利普斯(美国人)、C.科昂–塔努吉(法国人)
发明了用激光冷却和俘获原子的方法
1998年 劳克林(美国)、斯特默(美国)、崔琦(美籍华人)
发现了分数量子霍尔效应
1999年 H.霍夫特(荷兰)、M.韦尔特曼(荷兰)
阐明了物理中电镀弱交互作用的定量结构.
2000年 阿尔费罗夫(俄罗斯人)、基尔比(美国人)、克雷默(美国人)
因其研究具有开拓性,奠定资讯技术的基础,分享今年诺贝尔物理奖.
2001年 克特勒(德国)、康奈尔(美国)和维曼(美国)
在“碱性原子稀薄气体的玻色-爱因斯坦凝聚态”以及“凝聚态物质性质早期基础性研究”方面取得成就.
2002年 雷蒙德·戴维斯(美)、小柴昌俊(日)、里卡尔多·贾科尼(美)
在天体物理学领域做出的先驱性贡献,打开了人类观测宇宙的两个新“窗口”.
2003年 阿列克谢·阿布里科索夫(美俄双重国籍)、维塔利·金茨堡(俄)、安东尼·莱格特(英美双重国籍)
在超导体和超流体理论上作出的开创性贡献.
2004年 戴维·格罗斯、戴维·波利泽、弗兰克·维尔泽克(均为美国人)
这三位科学家对夸克的研究使科学更接近于实现它为“所有的事情构建理论”的梦想.
2005年 美国科罗拉多大学的约翰·L·霍尔、哈佛大学的罗伊·J·格劳贝尔,以及德国路德维希·马克西米利安大学(简称慕尼黑大学)的特奥多尔·亨施
研究成果可改进GPS技术
2006年 约翰·马瑟 乔治·斯穆特(均为美国人)
发现了黑体形态和宇宙微波背景辐射的扰动现象
2007年 阿尔贝·费尔(法) 彼得·格林贝格尔(德)
先后独立发现了“巨磁电阻”效应.这项技术被认为是“前途广阔的纳米技术领域的首批实际应用之一”.
2008年 小林诚、益川敏、南部阳一郎 (日)
发现了次原子物理的对称性自发破缺机制

第一次工业革命,物理学中的动力(水的动能转化为机械能),将人类带入了蒸汽时代。
第二次工业革命,物理学中的电学将人类带入了电气时代。
第三次科技革命,物理学中的电磁学将人类带入了网络时代。
总的说,人类如果没有物理知识,那这个社会就不会进步!!!...

全部展开

第一次工业革命,物理学中的动力(水的动能转化为机械能),将人类带入了蒸汽时代。
第二次工业革命,物理学中的电学将人类带入了电气时代。
第三次科技革命,物理学中的电磁学将人类带入了网络时代。
总的说,人类如果没有物理知识,那这个社会就不会进步!!!

收起

从瓦特对蒸汽机的发明到法拉第对电和磁的发现、从阿基米德对简单机械的发明到牛顿对万有引力的发现、从爱因斯坦的质能方程到现代机算机和网络的出现等等,这些都是物理学所研究的范围。而这些知识正在一步步地改变我们的生活!使我们的物质生文明和精神文明都在起着质的变化!
ruxin1973...

全部展开

从瓦特对蒸汽机的发明到法拉第对电和磁的发现、从阿基米德对简单机械的发明到牛顿对万有引力的发现、从爱因斯坦的质能方程到现代机算机和网络的出现等等,这些都是物理学所研究的范围。而这些知识正在一步步地改变我们的生活!使我们的物质生文明和精神文明都在起着质的变化!
ruxin1973

收起

肯定是最大的了