广义积分定义,它的发散和收敛的通俗解释

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 07:14:56
广义积分定义,它的发散和收敛的通俗解释
xے@_GRw /-Jo]0 ,gqz2=Lj@2w7$jGVk< ̚,LWP,heI-\+M` y? _e6{0LZՠh/4]R{m>{B~Iօ(^o4Cm=ZƎHVkr8*v&%E6wRbtb 跴W*ֈn@"z-Ð(”mgh} JEM2G&UPo(EiƔ1rB%8zcA!VM1t;u.~h?$V,_@oVY=*h}}y!^*sU +K,kX ^?C=6 m?0+ U樆 @NS6hF!둇٪,tq5΋EN Xy9T/؂ 7s!s",`"|́xdh|z '^*N M FGVwO޹/XXPܩ"ah

广义积分定义,它的发散和收敛的通俗解释
广义积分定义,它的发散和收敛的通俗解释

广义积分定义,它的发散和收敛的通俗解释
通俗的讲,积分是指函数图形与坐标轴围成的面积.例如f(x)从a到b的积分就等于曲线f(x),直线x=a,x=b和x轴围成的图形的面积.当然,这块面积在x轴上方的部分取为正,下方取为负.
然而有时候这个面积会少一条边.比如,积分上下限a或者b二者有一个是无穷大或者两个都为无穷大.例如f(x)从a到正无穷大的积分,它表示f(x)、直线x=a、x轴围成的面积.当然,因为缺少一条边,这块面积不是封闭的,它是向x轴正方向无穷延生的.又如,虽然积分上下限为确定值,但是函数图形本身无法和直线x=a、x=b、x轴围成封闭的面积.例如f(x)=1/x从0到1的积分,表示y=1/x、x=0、x=1、x轴围成的面积.因为f(x)=1/x在0出的值为无穷大,所以这块面积也不是封闭的,它是向y轴延生的.像这种积分表示的面积无限延生的情况,称之为广义积分.
因为面积无限延生,因此有可能面积的值为无穷大,例如y=x从0到正无穷的积分表示y=x、x=0和x轴围成的面积.任何一个人都应该知道这个面积应该为无穷大.像这种积分表示的面积为无穷大的情况,称之为广义积分发散.反之如果这个面积为一个有限数值,则称之为广义积分收敛.