mathematica 递推设数列{xn}由以下递推关系给出,x1=1/2,x(n+1)=xn^2+xn (n=1,2,3...),观察数列1/(x1+1)+1/(x2+1)+.+1/(xn+1)的极限,用Mathematica实现.希望可以用比较简单的for语句解决

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 03:29:28
mathematica 递推设数列{xn}由以下递推关系给出,x1=1/2,x(n+1)=xn^2+xn (n=1,2,3...),观察数列1/(x1+1)+1/(x2+1)+.+1/(xn+1)的极限,用Mathematica实现.希望可以用比较简单的for语句解决
xRKK@+{lɺn6ECEk*bn 7˰3ffb Z7At>wlsϽucnmw/ EpR , TŐ@ !As9q:,&,=P "1/Fq$jOu: wZ[%V9呋ydջyv\^]bNS,`DS٥N Ch\v01C>ctҜ[^'WN nIhSahQ.pF^=uܱS(a2&J$eB.KrNQO*ƛ:A% zDSK}Kr&uM

mathematica 递推设数列{xn}由以下递推关系给出,x1=1/2,x(n+1)=xn^2+xn (n=1,2,3...),观察数列1/(x1+1)+1/(x2+1)+.+1/(xn+1)的极限,用Mathematica实现.希望可以用比较简单的for语句解决
mathematica 递推
设数列{xn}由以下递推关系给出,x1=1/2,x(n+1)=xn^2+xn (n=1,2,3...),观察数列1/(x1+1)+1/(x2+1)+.+1/(xn+1)的极限,用Mathematica实现.
希望可以用比较简单的for语句解决

mathematica 递推设数列{xn}由以下递推关系给出,x1=1/2,x(n+1)=xn^2+xn (n=1,2,3...),观察数列1/(x1+1)+1/(x2+1)+.+1/(xn+1)的极限,用Mathematica实现.希望可以用比较简单的for语句解决
x[n_] := Which[n == 1,1/2,n > 1,x[n - 1]^2 + x[n - 1]];Table[Sum[1/(x[n] + 1),{n,1,t}] // N,{t,1,20}]
运行结果是{0.666667,1.2381,1.67053,1.91835,1.99384,1.99996,2.,2.,2.,\
2.,2.,2.,2.,2.,2.,2.,2.,2.,2.,2.}
可见极限是2
for语句不需要用