[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 00:23:54
[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]
x͐0!ɘq&A pmB+/(L6ş/dߗwuCʪʕSZkec8i2ڑ!Kua8' ZX:*HX,daMniixjwWcXq%ӸL%%"-K_

[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]
[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]

[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]
[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]
=[(1+2010)*2010/2]/[(1005*1006*.*2009)/(1006*1007*.*2010)]
=[(1+2010)*2010/2]/(1005/2010)
=2021055/(1005/2010)
=4042110

=2011*2010/2*1005/1006*1006/1007...*2009/2010=2011*1005/2=1060802.5

[1+2+3+4+5+...+2009+2010]/[(1-1/1006)(1-1/1007)...(1-1/2009)(1-1/2010)]
=[(1+2010)×2010/2]/[1005/1006×1006/1007×...×2008/2009×2009/2010]
=2011×1005÷1005/2010
=4042110