若不等式1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)>a/24对一切正整数n都成立,求a的最大值,纳发证明

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:05:44
若不等式1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)>a/24对一切正整数n都成立,求a的最大值,纳发证明
xT]k0+ylت44`܇DmI(I65}cR?fXknepsѹ;-/=ƽ+)P%( >H1]Ǵ*G@t~sg*;ϻyGoq >] ē;1x\oþ w g%^v\2\6̰EvrDEȀJTҀP-{˚)At.SlJO#y4ȃpar#Ntr4O` n|.aPM;ߡ0ږ'ǾvЋG:Yx {.7Kkң+ic"{DO [a R|ZChmHA9-\ZnU^W]== 7%Mx˺(z2 (ǴY3{cM?2ceoW"Rb#5u^2

若不等式1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)>a/24对一切正整数n都成立,求a的最大值,纳发证明
若不等式1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)>a/24对一切正整数n都成立,求a的最大值,
纳发证明

若不等式1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)>a/24对一切正整数n都成立,求a的最大值,纳发证明
f(n)=1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)
f(n+1)=1/(n+2) + 1/(n+3) +1/(n+4) +……+1/[3(n+1)+1]
f(n+1)-f(n)=1/(n+1) - 1/(3n+2)-1/(3n+3)-1/(3n+4)>0
所以函数f(n)对于n为正整数时为单调增函数
所以原不等式等效于a/24<1/2+1/3+1/4=13/12
即a<26
如果a取整数为25
证明:
当k=1时
1/2+1/3+1/4=13/12=26/24>25/24
结论成立.
假设k=n时结论成立,即
1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)>25/24
当k=n+1时
由于
9(n+1)^2=9n^2+18n+9>9n^2+18n+8=(3n+2)(3n+4)

9(n+1)^2/[(3n+2)(3n+4)]-1>0
左侧为
1/[(n+1)+1]+1/[(n+1)+2]+1/[(n+1)+3]+...+1/[3(n+1)+1]
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)}
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{6(n+1)/[(3n+2)(3n+4)]-2/(3n+3)}
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+2/(3n+3)*{9(n+1)^2/[(3n+2)(3n+4)]-1}
>1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)>25/24.
结论成立.