若不等式1/(n+1)+1/(n+2)+……1/(3n+1)>a/24对一切正整数n都成立,求正整数a的最大值,并证明结论

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/20 15:36:04
若不等式1/(n+1)+1/(n+2)+……1/(3n+1)>a/24对一切正整数n都成立,求正整数a的最大值,并证明结论
xSJA}/q]wBD좛``Q~JS)]]bgvgY e8wΜ9ine+N$.,S*%Ch [\Xͬ(`ob hQ5>Pȼt^a487KVNn TY}&-p!䶤qC*>I f}8sT0g+S mR DB!j eLT2Y NVu{</&]aW& ʻxp^?R)Ekj{(LPYMHq$4UvfIUWxbߒ$-Fm g#}XIH$-%4}Rw&

若不等式1/(n+1)+1/(n+2)+……1/(3n+1)>a/24对一切正整数n都成立,求正整数a的最大值,并证明结论
若不等式1/(n+1)+1/(n+2)+……1/(3n+1)>a/24对一切正整数n都成立,求正整数a的最大值,并证明结论

若不等式1/(n+1)+1/(n+2)+……1/(3n+1)>a/24对一切正整数n都成立,求正整数a的最大值,并证明结论
f(n)=1/(n+1) + 1/(n+2) +1/(n+3) +……+1/(3n+1)
f(n+1)=1/(n+2) + 1/(n+3) +1/(n+4) +……+1/[3(n+1)+1]
f(n+1)-f(n)=1/(n+1) - 1/(3n+2)-1/(3n+3)-1/(3n+4)>0
所以函数f(n)对于n为正整数时为单调增函数
所以原不等式等效于a/2425/24
当k=n+1时
由于
9(n+1)^2=9n^2+18n+9>9n^2+18n+8=(3n+2)(3n+4)

9(n+1)^2/[(3n+2)(3n+4)]-1>0
左侧为
1/[(n+1)+1]+1/[(n+1)+2]+1/[(n+1)+3]+...+1/[3(n+1)+1]
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{1/(3n+2)+1/(3n+3)+1/(3n+4)-1/(n+1)}
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+{6(n+1)/[(3n+2)(3n+4)]-2/(3n+3)}
=1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)+2/(3n+3)*{9(n+1)^2/[(3n+2)(3n+4)]-1}
>1/(n+1)+1/(n+2)+1/(n+3)+...+1/(3n+1)>25/24.
结论成立.
这样可以么?