设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 17:33:51
设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀
xRn@F`g |,.ZUA݌w.2N B#)IP* 43ẘ_5՝Ǚs9wRL0 z(Fo՘Q;'Y8b,.t*;tlh=IoAS=MeiB&,*ֈOodjZoi]׃7ЖÆ=F4[։lMpK iiLC&}ε&DqNֺiq3Yr~EH|Q7U = DМ^ѱ[s$5yCNՈcʊp8ԐI=Qzv<ֵ(`T4jU'wO<:ƆM$ ;^*Ϥ^w]KKQEޗE&!DSVl(G;g4M^COzlMʅp+ .O޼4YVMf!KrP~sw˄# V%

设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀
设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀随即数x1,x2,...,xn和y1,y2,...,yn,由此得到N个点(xi,yi)(i=1,2,...,N),在数出其中满足yi≤f(xi)(i=1,2,...,N)的点数Ni.那么有随机模拟法可得S的近似值为

设函数y=f(x)在区间[0,1]上的图像是连续不断的一条曲线,且横有0≤f(x)≤1,可以用随机模拟方法近似计算由曲线y=f(x)及直线x=0,x=1,y=0所围成部分的面积S.先产生两组(每组N个)区间[0,1]上的均匀
∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)
的图象与x轴、直线x=0和直线x=1所围成图形的面积,
∴根据几何概型易知∫01f(x)dx≈N1/N.
故答案为:N1/N.

设函数y=f(x)是最小正周期为2的偶函数,它在区间[0,1]上f(x)=-x+2,则在区间[1,2]上f(x)=?请大家帮帮忙啊! Thanks! 设f(x)=1+sinx,函数在区间[0,π]上的平均值у= 设函数y=f(x)是定义在(-1,1)上的增函数,则函数y=f(x2-1)的单调递减区间是______________ (1)函数y=(2+e的x次方)/(1-e的x次方)的值域为(?)(2)如果函数y=f(x)≥0和y=f'(x)≥0在区间D上都是增函数,那么函数f(x)=√f(x)+√f'(x)在区间D上也是增函数.设f(x)=√(x-1/x)+√(x+1/x).①求函数f(x)的定义 设函数f(x)对任意的实数x,y,有f(x+y)=F(x)+f(y),切当x大于0时,f(x)小于0,求f(x)在区间[a,b]上的最大值. 设f(x)是定义在R上的奇函数,f(1)=2,当x>0时,f(x)是增函数,且对任意的x,y属于R,都有f(x+y)=f(x)+f(y)则函数f(x)在区间[-3,-2]上的最大值是? 若f(x)为区间[a,b]上的凸函数,求m的值设函数y=f(x)在(a,b)上的导函数为f'(x),f'(x)在(a,b)上的导函数为f(x),若在(a,b)上,f(x)< 0 恒成立,则称函数f(x)在(a,b)上为“凸函数”.已知 f(x)=(1/12)X^4 - (1/6)mX^3 - (3/ 设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,...设函数f(x)对任意xy∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0,f(1)=-2,求f(x)在区间[-3,3]上的最大值和最小值. 设函数f(x)=x^3-x^2-x+1求1f(x)的极值2f(x)在区间[0,2]上的最值 求几个微积分题目1、设函数f(x)在区间[0,1]上有定义,则函数f(x+1/4)+f(x-1/4) 的定义域是________?2、函数f(x)=x3+2x在区间[0,1]上满足拉格朗日中值定理的点ξ是_________?3、函数y=xsinx的导数为_________?答 设定义在R上的偶函数y=f(x)在区间[0,+∞)上是减函数,若实数x满足f(x)>f(2x+1),求x的取值范围 若函数y=f(x)的倒函数在区间【a,b】上是增函数,则函数y=f(x)在区间【a,b】上的图 设函数f(x)是区间[a,b]上的减函数,且恒取正值,试讨论下列函数在区间[a,b]上的单调性(4)y=1-根号下f(X) 设函数fx的定义域为r,若f(x+1)与f(x-1)都是奇函数,则函数y=f(x)在区间【0,100】上至少有几个零点 设f(x)是定义在区间U上的增函数,且f(x)>0,则下列函数中增函数的个数是( ) ①y=1-f(x)②y=1/f(x)③y=[f(x)]²④y=-√f(x)A.1B.2C.3D.4 1.已知函数f(x),当x,y属于r时,恒有f(x+y)-f(x)+f(Y),(1)求证f(x)是奇函数,(2)如果x属于R,f(x)<0,并且f(1)=-1/2,试求f(x)在区间[-2,6]上的最值2.设函数Y=f(x)是定义在R上的减函数,并且满足f(xy)=f 设f是定义在(-∞,0)∪(0,+∞)上的函数,f(x)满足:f(xy)=f(x)+f(y),且f(x)是区间(0,∞)上的递增函数.1.求f(1),f(-1)的值:2.求证f(x)是偶函数:3.解不等式f(2)+f(x-2/1) 二次函数y=f(x)满足:(1)f(0)=1;(2)f(x+1)-f(x)=2x,求f(x)的解析式,求f(x)在区间【-1,1】最小值和最大值;(3)设g(x)=f(x-a),求g(x)在区间【-1,1】上的最大值