已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=x相切 (1)求f(x)的解析式 (2)当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,试求t,m的值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 07:49:12
xݓN@_ݬel,Ny^C$ևhlPT!QҐ&vxhg[^(RCCoc"|AU|jAe(K
ŜD{œh K$bFaQEFY*-)-`
WZsʲzaeF1T}Y!OߋTaǻ5Ai}PdհMFN ԛ}k(xxtKy'7Ob!6>7DTxVP\P,A;xKND+<9qf-W
ozL
% 7,E:~O
已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=x相切 (1)求f(x)的解析式 (2)当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,试求t,m的值
已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=x相切
(1)求f(x)的解析式
(2)当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,试求t,m的值
已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=x相切 (1)求f(x)的解析式 (2)当且仅当x∈[4,m](m>4)时,f(x-t)≤x恒成立,试求t,m的值
(1)由对任意x∈R,均有f(x-4)=f(2-x)可知f(x)关于x=3对称,因此f(x)=ax2+bx对称轴x=-b/(2a)=3,有b=-6a
由函数f(x)的图像与y=x相切得ax2+bx=x有两相等实根,即化为x[ax+(b-1)]=0,x=-(b-1)/a=0,则b=1
所以a=-1/6,b=1,则f(x)=-1/6*x2+x
(2)f(x-t)≤x恒成立,则化为1/6*(x-t)^2+t>=0在x∈[4,m](m>4)时恒成立,令F(x)=1/6*(x-t)^2+t,分为以下三类:
(i)t<=4时,F(x)min=F(4)>=0恒成立,求出t的范围
(ii)t>=m时,F(x)min=F(m)>=0恒成立,求出t和m的范围
(iii)4
已知二次函数f x ax2+bx(a不等0,满足1
已知二次函数f(x)=ax2 bx c(a不等于零,b,c属于R)满足:对任意实数
已知二次函数f(x)=ax2+bx+c满足:绝对值f(1)=绝对值f(-1)=绝对值f(0)=1求f(x)表达式
已知二次函数f(x)=ax2+bx+c(a>0)满足条件f(1)=f(3),则f(1),f(2),f(4)的大小
已知二次函数F(x)=ax2+bx满足条件1.f(0)=f(1)2.f(x)的最小值为要带过程的,急
高中数学二次函数F(x)=ax2+bx.满足条件F(2)=0,F(x)=x有根
判断二次函数f(x)=ax2+bx+c(a
二次函数f(x)=ax2+bx+c(a
证明二次函数f(x)=ax2+bx+c(a
证明二次函数f(x)=ax2+bx+c(a
急!已知二次函数f(x)=ax2+bx(a,b为常数已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足:f(x-1)=f(3-x)且方程f(x)=2x有等根.(1)求f(x)的解析式;(2)是否存在实数m,n(m
已知二次函数f(x)=ax2+bx已知二次函数f(X)=ax2+bx(a b为常数)且a不等于0 且满足f(-x+5)=f(x-3)且方程f(x)=x 有等根 1 求f(x)的解析式 2 若存在实数m(m
已知二次函数f(x)=ax2+bx满足条件①对任意x∈R,均有f(x-4)=f(2-x)②函数f(x)的图像与y=
已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件f(-x+5)=f(x-3)且方程f(x)=x有等根,求f(x)的解析式.
已知二次函数f(x)=ax2+bx,满足条件f(1+x)=f(1-x),且方程f(x)=x有等根.求f(x)的解析式
已知二次函数f[x]=ax2+bx[a不等于0],满足f[x-1]=f[3-x]且方程f[x]=2x,有等根,求f[x]
已知二次函数f[x]=ax2+bx[a不等于0],满足f[x-1]=f[3-x]且方程f[x]=2x,有等根,求f[x]
已知二次函数f(x)=ax2+bx++c,且不等式f(x)>2x的解是1