四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 11:58:25
四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1
xVOVW*Nľl&yAF;B1 kKђ:t AJ?%uε15he/|{uz}xus| _uk/`BR*޹\^TTW#vپ{ߩ6m oRf7 ծ/ׅ*z]xu+'M^Ӝ3(08v0KU`s> 4J^p>D(0_-Csu\yDj3KTۯ6Z#nӟ--W_̰vcN Tnpj?p}q6@"t^GEp**몦P ]1UYNu ]y|iJavq>̆ eAI4zLx~^:6Y Λ@cr4Gn[Iy9caw|_KhiەQr^NNa}}/<!{=?o.C!?DBsߔ̘Ƹa}&a˩!|Ӡsp$ DA&Z@ILxͥj ܶ (/ɝQBݛ).A%v!fwQCf!,6<A0)D*7KQ1gF%PWM!F͞PCg_OEߡ73~Z3{2cZ_ZvRIOMe?t$ɦ'&š|INwҙs>}DΪQs[&G$YsHD&oJDLMdѣfjĴDQ):ʘјEac ŢJ %AZxh}-IFyب8K\ej\֜#=k

四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1
四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.
【1】求OE的长
【2】求过O,C,D三点抛物线的解析式
【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t秒为何值时,直线PF把△FOB分成面积之比为1:3的两部分.

四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1
(1)∵四边形OABC是矩形,
∴∠CDE=∠AOE=90°,OA=BC=CD.
又∵∠CED=∠OEA,
∴△CDE≌△AOE.
∴OE=DE.
∴OE^2+OA^2=(AD-DE)^2,
即OE^2+4^2=(8-OE)^2,
解之,得OE=3.
(2)EC=8-3=5.过D作DG⊥EC于G,
∴△DGE∽△CDE.
∴DE/EC=DG/CD,DE/EC=EG/DE.
∴DG=12/5,EG=9/5.
∴D(24/5,12/5).
因O点为坐标原点,
故可设过O,C,D三点抛物线的解析式为y=ax^2+bx.
∴{64a+8b=0
    (245)^2a+24/5b=12/5
解/之,得{a=-5/32
                b=5/4
y=-5/32x^2+5/4x
(3)∵抛物线的对称轴为x=4,
∴其顶点坐标为(4,5/2).
设直线AC的解析式为y=kx+b,
则{8k+b=0
     b=-4解之,得{k=1/2
                           b=-4
∴y=1/2x-4.
设直线FP交直线AC于H(m,1/2m-4),过H作HM⊥OA于M.
∴△AMH∽△AOC.
∴HM:OC=AH:AC.
∵S△FAH:S△FHC=1:3或3:1,
∴AH:HC=1:3或3:1,
∴HM:OC=AH:AC=1:4或3:4.
∴HM=2或6,
即m=2或6.
∴H1(2,-3),H2(6,-1).
直线FH1的解析式为y=11/4x-17/2.
当y=-4时,x=18/11.
直线FH2的解析式为y=-7/4x+19/2.
当y=-4时,x=54/7.
∴当t=18/11秒或54/7秒时,
直线FP把△FAC分成面积之比为1:3的两部分.

 四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠 四边形OABC是矩形 四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠 四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠.使点A落在D处,BD 如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠。使点A落在D处,BD交OC于E。【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】 已知空间四边形OABC中,OA=OC,AB=CB,E、F、G、H分别为OA、AB、BC、CO的中点,求证:四边形EFGH是矩形 如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,是点B与点O重合,点C移动到点F位置,折痕为DE(1)求OD的长;(2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明;(3)以O点位坐标原点,OC、OA所在的 四边形OABC是矩形,OA=2,OC=4,将矩形OABC沿直线AC折叠.使点B落在D处,AD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1 四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠.使点A落在D处,BD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1 25、如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线OB折叠,使点A落在D处,BD交OC于E.【1】求OE的长【2】求过O,C,D三点抛物线的解析式【3】若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射 如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移动到点F位置,折痕为DE.(1).求OD的长(2)连接BE,四边形OEBD是什么特殊四边形?请运用所学的知识进行说明;(3)以O点为坐标原点,OC, 【急求】如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,如图,在平面直角坐标系中,矩形OABC的两边OA、OC分别在x轴、y轴的正半轴上,OA=4,OC=2.点P从点O出发,沿x轴以每 把矩形OABC放入直角坐标系XOY中,使OA,OC分别落在x轴,y轴的正半轴上,连接AC,已知AC=4倍根号5,OC/OA=1/2,将纸片OABC折叠,是点A与点C重合(折痕为EF),求折叠后纸片重叠部分面积 如图,把矩形OABC放置在直角坐标系中,OA=6,OC=8,若将矩形折叠,使点B与O重合,得到折痕EF.(1)可以通过 变换,使四边形BEFC变到四边形AEFO的位置(2)求点E的坐标(4)若一条直线经过点M(5,5)把 如图9,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形.OA=6 OC=4 P在Bc上如图9,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形.OA=6 OC=4 P在Bc上运动,过PQ垂直于OP.交AB于Q则AQ最小值是 已知空间四边形OABC中,OA=OB,CA=CB,E、F、G、H分别为OA、OB、BC、CA的中点,求证四边形EFGH是矩形 不用向量方法证明已知空间四边形OABC中,OA=OB,CA=CB,EFGH分别为OA OB BC CA中点,求证四边形EFGH是矩形 不用向量方法证明已知空间四边形OABC中,OA=OB,CA=CB,EFGH分别为OA OB BC CA中点,求证四边形EFGH是矩形 如图,在平面直角坐标系中,四边形OABC为矩形,OA=3,OC=4,P为直线AB上一动点,将直线OP绕点P逆时针方向 如题:在平面直角坐标系中,矩形OABC的两边OA、OC分别在X轴、Y轴的正半轴上,OA=4,OC=2,点P从点O出发.在平面直角坐标系中,矩形OABC的两边OA、OC分别在X轴、Y轴的正半轴上,OA=4,OC=2,点P从点O出发.沿X 已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以OA、OC所在的直线为x轴、y轴,建立如图所示的平面直角坐标系,直线1经过C、E两点(1)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形内