什么是元周率?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:34:33
什么是元周率?
xuoH"VWuwUs!A((d␔EHQ 7K\%YK=X-y#^`F`'djoOTş~o#wnߘߺ}?o^w-v<ť{b~3\:=ӗ~_lc{r[w/|q쩕6tMVf666ֶ6>ٽ{x}k޲:s7չ_Û,sG烟/Oٹsn~oܘ{"+/#篭>{7kǶ^nYڛs_8t>k>Չ˫ϗyxw~|s_Gomݿ_0vEnxs>r{kփI .wրGΧNlmnn_g<~n>}0nx?ۗ·>Õ;Ãy3_}+O6ޜ׏'Qy,fo|#|j{uPqyØΣ՛Gb6{\Xmgsѷ?b[.7i⭭WX?ɍ>"q@ @ W/n>}[c ֘ڽ{:FYge)ͧ~koϗ>2%>6^_;}SK'͍KXv&o^!/v]8|7<墏rO^}x9.Qr^h΃g֚o;yYFYws7m{{>?cq_}2ezzoO,_Ǡ^^ ϯ~>~ Nb덧غ6^yW?|?~R?_^Iҏ^~W`+ɯ^ۗ6)z>X&?ek7ZگI/.9yi8s$0`qrzgWC +g!X<%0p~ڷlݽx5}tqY{oGY;4?umkoy`);7/I\|vП[o2꽇ȝG4`ݾ/?:Yt" k]'5}z󮼮/1<~>2:,{Ozp ͿKL0H? [p"o[[l';nnj;招w>ǸnFdr=g?Ũ'E;_:;9Zۇe滋!~Ąc3ۃOx])5_wNH՚+iR76~'wp nbd*V<%`{%h-TF/g'G =oqZ@w5cXIK(8?/W ik i-a$\uUiA|\ֽOքΖՅ˜/pͅķuOjqjxu% Yu2xre/K\m| .7^3]=#G ;~˿S{\;3<Ol=x{1uu Ԉ| 9e;_D۞}}zz._ ~.2 ۗ5🪁jLcWj)2L]Jvc }}7TkcPPr駡 S,S ֎. w b%C e.}4.T:Lj}7qjMVRSi 9N]CŅ1.a,oԏ#Θ^_U\k~s?&`g]a|6Tq x=g=h2?:Ī$`j ƄeL ˨ea n/7c3znc|Vgz|1ҳN ƞgP?pU |&`a͂ΰ2=S 8( 2F1B[CkOB!%ΐI'7o#$M" #׎ jpgu IYUYuVe ټ#EqLA% 34YF| = @OpF׈S NGMv}Vm,ۇhΞHc1쓓NAvjhKTAOO2Wju[W"pjC!`oX )X$(_dUgE, ,Sw!NVi|Qy=/IT+2 *D^6eDb˾ F1= /)&% C kBܨPilM}]ysjgǣ(d{Z&!]j@iu\;U(o{jnFLFokE(F ]o#JejBZ+bҠ]#`dLȠ&ZȒ`9j?4 .C*B^9hR#C139wYBNSI#e ʤՑ@@6V{vlrޱՈUMJ '#1 clo6ۤ>EցnuI6XDbt2P)h0W(z(+hͣ%!4R/+훠qe=DD x(Qo6i+)'kU; ;NYJ䩝;q# de9;,=<<=[J  v[KMuvnT arTHRY78BVJSkZh}@`gU x6pzl0:5|_RIOJD 9z+Z< tĊOI[f- emѬu>ډ+c#Y˳1pVLmJ#>CNkR{}$x@vns<TX֕p&AN0ѐ k6*1mt Џyq`,Ip{pN⁼W(P3d_[#6ZIpJ{alrU;*T@)L5B h<T΋@(yL:܋wa<#PY=Ke@FIu[-s !%jxvZՅءZ*B2{4)N|W8`fKX e!zB;a%9`RyC=UГch4m"2 Q5zg#bO ,#;AV6ť`rV&%*V\6M%/zCnKIpdbOYY[3 :Іs+ɪSh%-T`dCcg$)@gRQ\jl cV6ސdKnAF'üE:˭-Hw(1ߝ[@fLwvN難 t]-m:=w63GVO.

什么是元周率?
什么是元周率?

什么是元周率?
圆周率,圆的周长除以直径的比值.

元周率是 圆的周长与直径不比值

圆周率是指平面上圆的周长于直径之比。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由...

全部展开

圆周率是指平面上圆的周长于直径之比。作为一个非常重要的常数,圆周率最早是出于解决有关圆的计算问题。中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的记录。德国数学家柯伦于1596年将π值算到20位小数值,后来投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。1579年法国数学家韦达给出了π的第一个解析表达式,此后π值计算精度也迅速增加。1706 年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高记录。

收起

圆周率
圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圆率、周等名称。(π≈3.14)
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历...

全部展开

圆周率
圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圆率、周等名称。(π≈3.14)
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值 ,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米得 ,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形 开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或 阿基米得方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确 到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后 7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
另外,还有一些国家的数学家们为圆周率的计算作出杰出的贡献,如今用电子计算机已经可以将圆周率的位数计算到天文数字,已经失去了计算圆周率的初衷———计算圆的周长,而是计算的位数越多体现了计算机水平的发展越超前

收起

周长/半径

圆周率
圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圆率、周等名称。(π≈3.14)
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历...

全部展开

圆周率
圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π表示。中国古代有圆率、圆率、周等名称。(π≈3.14)
古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有「径一而周三」的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值 ,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈3.1604 。第一个用科学方法寻求圆周率数值的人是阿基米得 ,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形 开始,逐次加倍计算到正96边形,得到(3+(10/71)) < π < (3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或 阿基米得方法),得出精确到小数点后两位的π值。
中国数学家刘徽在注释《九章算术》时(263年)只用圆内接正多边形就求得π的近似值,也得出精确 到两位小数的π值,他的方法被后人称为割圆术。南北朝时代的数学家祖冲之进一步得出精确到小数点后 7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。
另外,还有一些国家的数学家们为圆周率的计算作出杰出的贡献,如今用电子计算机已经可以将圆周率的位数计算到天文数字,已经失去了计算圆周率的初衷———计算圆的周长,而是计算的位数越多体现了计算机水平的发展越超前1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196 4428810975 6659334461 2847564823 3786783165 2712019091 4564856692 3460348610 4543266482 1339360726 0249141273 7245870066 0631558817 4881520920 9628292540 9171536436 7892590360 0113305305 4882046652 1384146951 9415116094 3305727036 5759591953 0921861173 8193261179 3105118548 0744623799 6274956735 1885752724 8912279381 8301194912 9833673362 4406566430 8602139494 6395224737 1907021798 6094370277 0539217176 2931767523 8467481846 7669405132 0005681271 4526356082 7785771342 7577896091 7363717872 1468440901 2249534301 4654958537 1050792279 6892589235
4201995611 2129021960 8640344181 5981362977 4771309960 5187072113 4999999837 2978049951 0597317328 1609631859 5024459455 3469083026 4252230825 3344685035 2619311881 7101000313 7838752886 5875332083 8142061717 7669147303 5982534904 2875546873 1159562863 8823537875 9375195778 1857780532 1712268066 1300192787 6611195909 2164201989
----- [1000] -----
3809525720 1065485863 2788659361 5338182796 8230301952 0353018529 6899577362 2599413891 2497217752 8347913151 5574857242 4541506959 5082953311 6861727855 8890750983 8175463746 4939319255 0604009277 0167113900 9848824012 8583616035 6370766010 4710181942 9555961989 4676783744 9448255379 7747268471 0404753464 6208046684 2590694912 9331367702 8989152104 7521620569 6602405803 8150193511 2533824300 3558764024 7496473263 9141992726 0426992279 6782354781 6360093417 2164121992 4586315030 2861829745 5570674983 8505494588 5869269956 9092721079 7509302955 3211653449 8720275596 0236480665 4991198818 3479775356 6369807426 5425278625 5181841757 4672890977 7727938000 8164706001 6145249192 1732172147 7235014144 1973568548 1613611573 5255213347 5741849468 4385233239 0739414333
4547762416 8625189835 6948556209 9219222184 2725502542 5688767179 0494601653 4668049886 2723279178 6085784383 8279679766 8145410095 3883786360 9506800642 2512520511 7392984896 0841284886 2694560424 1965285022 2106611863 0674427862 2039194945 0471237137 8696095636 4371917287 4677646575 7396241389 0865832645 9958133904 7802759009
----- [2000] -----
9465764078 9512694683 9835259570 9825822620 5224894077 2671947826 8482601476 9909026401 3639443745 5305068203 4962524517 4939965143 1429809190 6592509372 2169646151 5709858387 4105978859 5977297549 8930161753 9284681382 6868386894 2774155991 8559252459 5395943104 9972524680 8459872736 4469584865 3836736222 6260991246 0805124388 4390451244 1365497627 8079771569 1435997700 1296160894 4169486855 5848406353 4220722258 2848864815 8456028506 0168427394 5226746767 8895252138 5225499546 6672782398 6456596116 3548862305 7745649803 5593634568 1743241125 1507606947 9451096596 0940252288 7971089314 5669136867 2287489405 6010150330 8617928680 9208747609 1782493858 9009714909 6759852613 6554978189 3129784821 6829989487 2265880485 7564014270 4775551323 7964145152 3746234364
5428584447 9526586782 1051141354 7357395231 1342716610 2135969536 2314429524 8493718711 0145765403 5902799344 0374200731 0578539062 1983874478 0847848968 3321445713 8687519435 0643021845 3191048481 0053706146 8067491927 8191197939 9520614196 6342875444 0643745123 7181921799 9839101591 9561814675 1426912397 4894090718 6494231961
----- [3000] -----
5679452080 9514655022 5231603881 9301420937 6213785595 6638937787 0830390697 9207734672 2182562599 6615014215 0306803844 7734549202 6054146659 2520149744 2850732518 6660021324 3408819071 0486331734 6496514539 0579626856 1005508106 6587969981 6357473638 4052571459 1028970641 4011097120 6280439039 7595156771 5770042033 7869936007 2305587631 7635942187 3125147120 5329281918 2618612586 7321579198 4148488291 6447060957 5270695722 0917567116 7229109816 9091528017 3506712748 5832228718 3520935396 5725121083 5791513698 8209144421 0067510334 6711031412 6711136990 8658516398 3150197016 5151168517 1437657618 3515565088 4909989859 9823873455 2833163550 7647918535 8932261854 8963213293 3089857064 2046752590 7091548141 6549859461 6371802709 8199430992 4488957571 2828905923
2332609729 9712084433 5732654893 8239119325 9746366730 5836041428 1388303203 8249037589 8524374417 0291327656 1809377344 4030707469 2112019130 2033038019 7621101100 4492932151 6084244485 9637669838 9522868478 3123552658 2131449576 8572624334 4189303968 6426243410 7732269780 2807318915 4411010446 8232527162 0105265227 2111660396
----- [4000] -----
6655730925 4711055785 3763466820 6531098965 2691862056 4769312570 5863566201 8558100729 3606598764 8611791045 3348850346 1136576867 5324944166 8039626579 7877185560 8455296541 2665408530 6143444318 5867697514 5661406800 7002378776 5913440171 2749470420 5622305389 9456131407 1127000407 8547332699 3908145466 4645880797 2708266830 6343285878 5698305235 8089330657 5740679545 7163775254 2021149557 6158140025 0126228594 1302164715 5097925923 0990796547 3761255176 5675135751 7829666454 7791745011 2996148903 0463994713 2962107340 4375189573 5961458901 9389713111 7904297828 5647503203 1986915140 2870808599 0480109412 1472213179 4764777262 2414254854 5403321571 8530614228 8137585043 0633217518 2979866223 7172159160 7716692547 4873898665 4949450114 6540628433 6639379003
9769265672 1463853067 3609657120 9180763832 7166416274 8888007869 2560290228 4721040317 2118608204 1900042296 6171196377 9213375751 1495950156 6049631862 9472654736 4252308177 0367515906 7350235072 8354056704 0386743513 6222247715 8915049530 9844489333 0963408780 7693259939 7805419341 4473774418 4263129860 8099888687 4132604721
----- [5000] -----
5695162396 5864573021 6315981931 9516735381 2974167729 4786724229 2465436680 0980676928 2382806899 6400482435 4037014163 1496589794 0924323789 6907069779 4223625082 2168895738 3798623001 5937764716 5122893578 6015881617 5578297352 3344604281 5126272037 3431465319 7777416031 9906655418 7639792933 4419521541 3418994854 4473456738 3162499341 9131814809 2777710386 3877343177 2075456545 3220777092 1201905166 0962804909 2636019759 8828161332 3166636528 6193266863 3606273567 6303544776 2803504507 7723554710 5859548702 7908143562 4014517180 6246436267 9456127531 8134078330 3362542327 8394497538 2437205835 3114771199 2606381334 6776879695 9703098339 1307710987 0408591337 4641442822 7726346594 7047458784 7787201927 7152807317 6790770715 7213444730 6057007334 9243693113 8350493163 1284042512 1925651798 0694113528 0131470130 4781643788 5185290928 5452011658 3934196562 1349143415 9562586586 5570552690 4965209858 0338507224 2648293972 8584783163 0577775606 8887644624 8246857926 0395352773 4803048029 0058760758 2510474709 1643961362 6760449256 2742042083 2085661190 6254543372 1315359584 5068772460
----- [6000] -----
2901618766 7952406163 4252257719 5429162991 9306455377 9914037340 4328752628 8896399587 9475729174 6426357455 2540790914 5135711136 9410911939 3251910760 2082520261 8798531887 7058429725 9167781314 9699009019 2116971737 2784768472 6860849003 3770242429 1651300500 5168323364 3503895170 2989392233 4517220138 1280696501 1784408745 1960121228 5993716231 3017114448 4640903890 6449544400 6198690754 8516026327 5052983491 8740786680 8818338510 2283345085 0486082503 9302133219 7155184306 3545500766 8282949304 1377655279 3975175461 3953984683 3936383047 4611996653 8581538420 5685338621 8672523340 2830871123 2827892125 0771262946 3229563989 8989358211 6745627010 2183564622 0134967151 8819097303 8119800497 3407239610 3685406643 1939509790 1906996395 5245300545 0580685501
9567302292 1913933918 5680344903 9820595510 0226353536 1920419947 4553859381 0234395544 9597783779 0237421617 2711172364 3435439478 2218185286 2408514006 6604433258 8856986705 4315470696 5747458550 3323233421 0730154594 0516553790 6866273337 9958511562 5784322988 2737231989 8757141595 7811196358 3300594087 3068121602 8764962867
----- [7000] -----
4460477464 9159950549 7374256269 0104903778 1986835938 1465741268 0492564879 8556145372 3478673303 9046883834 3634655379 4986419270 5638729317 4872332083 7601123029 9113679386 2708943879 9362016295 1541337142 4892830722 0126901475 4668476535 7616477379 4675200490 7571555278 1965362132 3926406160 1363581559 0742202020 3187277605 2772190055 6148425551 8792530343 5139844253 2234157623 3610642506 3904975008 6562710953 5919465897 5141310348 2276930624 7435363256 9160781547 8181152843 6679570611 0861533150 4452127473 9245449454 2368288606 1340841486 3776700961 2071512491 4043027253 8607648236 3414334623 5189757664 5216413767 9690314950 1910857598 4423919862 9164219399 4907236234 6468441173 9403265918 4044378051 3338945257 4239950829 6591228508 5558215725 0310712570
1266830240 2929525220 1187267675 6220415420 5161841634 8475651699 9811614101 0029960783 8690929160 3028840026 9104140792 8862150784 2451670908 7000699282 1206604183 7180653556 7252532567 5328612910 4248776182 5829765157 9598470356 2226293486 0034158722 9805349896 5022629174 8788202734 2092222453 3985626476 6914905562 8425039127
----- [8000] -----
5771028402 7998066365 8254889264 8802545661 0172967026 6407655904 2909945681 5065265305 3718294127 0336931378 5178609040 7086671149 6558343434 7693385781 7113864558 7367812301 4587687126 6034891390 9562009939 3610310291 6161528813 8437909904 2317473363 9480457593 1493140529 7634757481 1935670911 0137751721 0080315590 2485309066 9203767192 2033229094 3346768514 2214477379 3937517034 4366199104 0337511173 5471918550 4644902636 5512816228 8244625759 1633303910 7225383742 1821408835 0865739177 1509682887 4782656995 9957449066 1758344137 5223970968 3408005355 9849175417 3818839994 4697486762 6551658276 5848358845 3142775687 9002909517 0283529716 3445621296 4043523117 6006651012 4120065975 5851276178 5838292041 9748442360 8007193045 7618932349 2292796501 9875187212
7267507981 2554709589 0455635792 1221033346 6974992356 3025494780 2490114195 2123828153 0911407907 3860251522 7429958180 7247162591 6685451333 1239480494 7079119153 2673430282 4418604142 6363954800 0448002670 4962482017 9289647669 7583183271 3142517029 6923488962 7668440323 2609275249 6035799646 9256504936 8183609003 2380929345

收起