函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上①f(x)为增函数,f(x)>0②g(x)为减函数,g(x)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:03:40
x){ھ
i:@O{v%:Q')Ɏ{|dgΓS
]Q~4qH.1K$`ghtL{?T$`TO`3p[
a~@;Ȱ$$ف 7
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上①f(x)为增函数,f(x)>0②g(x)为减函数,g(x)
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上
①f(x)为增函数,f(x)>0
②g(x)为减函数,g(x)
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上①f(x)为增函数,f(x)>0②g(x)为减函数,g(x)
h(x)=f(x)g(x)
a
设函数f(x),g(x)在区间[a,b]上连续,且f(a)
已知函数f(x),g(x)在同一区间,f(x)是增函数,g(x)是减函数,且g(x)不等于0,那么在这个区间上( )A.f(x)+g(x)为减函数 B.f(x)-g(x)为增函数 C.f(x)g(x)为减函数D.f(x)/g(x)为增函数
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上满足函数f(x),g(x)在区间[a.b]上都有意义,且在此区间上满足:(1)f(x)为增函数且f(x)>0(2)g(x)为减函数且g(x)
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上①f(x)为增函数,f(x)>0②g(x)为减函数,g(x)
函数f(x),g(x)在区间[a,b]上都有意义,且在此区间上满足;(1)f(x)为增函数且f(x)>0;(2)g(x)为减函数且g(x)
一条简单的函数连续和极限问题设函数f(x)、g(x)在区间[a,b]上连续,且f(a)>g(a),f(b)
函数f(n),g(n)在区间[a,b]上都意义,且在此区间上满足:(1)f(x)为增函数且f(x)>0(2)g(x)为减函数且g(x)
已知f(x)、g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)不等于0则?A.f(x)+g(...已知f(x)、g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)不等于0则?A.f(x)+g(x)为减函数 B.f(x)-g(x)为增函
设f(x),g(x)都是区间【a,b】上的单调递增函数,并且在该区间上,f(x)
设函数f(x)和g(x)在区间[a,b]上的导数满足f'(x)>g'(x),则在(a,b)上一定有 A f(x)>g(x) B f(x)g(x)+f(a) D f(x)+g(b)>g(x)+f(b)
已知a,b是实数,函数f(x)=x^3+ax,g(x)=x^2+bx,f'(x)和g'(x)是f(x),g(x)的导函数,若f'(x)g'(x)≥0在函数区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致.1.设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,
函数单调性选择题已知函数f(x),g(x)定义在同一区间上,f(x)是增函数,g(x)是减函数,且g(x)不等于0,那么在这个区间上A.f(x)+g(x)为减函数B.f(x)-g(x)为增函数C.f(x)g(x)为减函数D.f(x)/g(x)为增函数-------------
证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一...
函数f(x)·g(x)在区间[a,b]上都有意义,且在此区间上满足(1)f(x)为增函数且f(x)>0;(2)g(x)为减函数且g(x)<0.判断f(x)·g(x)在[a,b]上的单调性,并给出证明
已知f(x),g(x)定义在同一区间上.且f(x)是增函数,g(x)是减函数,g(x)不等于零,则在该区间上拜托各位大A.f(x)+g(x)为减函数 B.f(x)-g(x)为增函数 C.f(x)乘g(x)为减函数 D.f(x)/g(x)为增函数 麻烦讲下各选项怎
设f(x)与g(x)是定义在同一区间【a,b】上的两个函数,若对任意x∈【a,b】,都有|f(x)-g(x)|≤1成立,则称f(x)与g(x)在区间【a,b】上是密切函数,区间【a,b】称为密切区间.若f(x)=x^2-3x+4与g(x)=2x-3在【a,b】
若函数f(X) 在区间 (a,b] 上是增函数,在区间 [b,c) 上也是增函数,则f(x) 在区间(a,c) 上是什么函数
设f(x)和g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有f(x)-g(x)x∈[a,b]上有两个不同的零点,就称f(x) 和g(x)在[a,b]上是关联函数,区间[a,b]为关联区间.若f(x)=x^2-3x+4与g(x)=2x+m在