定积分旋转体体积的问题定积分平面面积沿着X轴转的旋转体和Y轴的旋转体体积相等吗?我觉得不等..用最简单的例子来说吧,y=x^2,区间(0,1)内,函数图像与X轴围成的面积.与y轴旋转所得的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 19:41:57
定积分旋转体体积的问题定积分平面面积沿着X轴转的旋转体和Y轴的旋转体体积相等吗?我觉得不等..用最简单的例子来说吧,y=x^2,区间(0,1)内,函数图像与X轴围成的面积.与y轴旋转所得的体积
xVNG~+R$.ۻ6`*h5Ra[r1؀1$؁ 4 $#ovl4QHU|ќ9g(x<эEV=}kk=oH鬑Gzzgo9xm3K@$5m8YV8ohHVvDӪSI"FHWh&kʡqHY*76ί1 ^Wd.*Mv$2l 4 rdn 4 yCvCSG0R4.k=ƅk}VsVkԌ)}o8:c'5!гVQe"O1.QA؛.OjOF2Ҵ)!5#AP~SI.W6ӯk}KIdk0Hr1 $_CV쉫Z%KUWjWj!yTL  uzM_G-QĄc8߲L|[#/l6uD OOXEdiD=Gn;oK_vۄp]{@r:%π y~q6sɢ}>$vux}.RaRk| {[VE2ۢ;'7ϵbY~"rGGt ah"B2ma2b<˭0r{qh1z =7Y\l?7Z0 `#MJDn3,xn"WinLݦ6i6}<!zj3 3l §*:I(7j$H}Mb-R>X !6b~VL 6Xz,!遄;ͣȏnI`'|;$( 8 !&Y-fQƙN"u@+('Ӆ6oHl_H v/PtT/_B3m;[1|>t=j'N kCfjV1Z r*~LiY- ܶ,.bbz<E_|oa3s0dE蓕?t6I ŠƇ.Ha'欅\nr騏n >V86JJT>YYeҤ0eS^{y / r

定积分旋转体体积的问题定积分平面面积沿着X轴转的旋转体和Y轴的旋转体体积相等吗?我觉得不等..用最简单的例子来说吧,y=x^2,区间(0,1)内,函数图像与X轴围成的面积.与y轴旋转所得的体积
定积分旋转体体积的问题
定积分平面面积沿着X轴转的旋转体和Y轴的旋转体体积相等吗?
我觉得不等..
用最简单的例子来说吧,y=x^2,区间(0,1)内,函数图像与X轴围成的面积.与y轴旋转所得的体积,怎么求?
x轴的自然会了.你能讲明白点么,逃课了学不明白..
微元法什么的不是很明白,总之是用V=∫(b-a)π*f^2(x)dx计算,y轴的话应该是dy吧。就用我给的那个公式算就好了。这道题我只是举个例子,所以楼下那位“圆筒”的算法不能适用

定积分旋转体体积的问题定积分平面面积沿着X轴转的旋转体和Y轴的旋转体体积相等吗?我觉得不等..用最简单的例子来说吧,y=x^2,区间(0,1)内,函数图像与X轴围成的面积.与y轴旋转所得的体积
首先你将图画出来,在(0,1)上,图像在y轴投影区间也是(0,1),我们绕y轴旋转后得到一个立体图形对吧,在y轴上的点y处取一段微元dy,这段微元必然与一段体积微元dv对应,将这个体积微元近似看做一个圆柱体,高为dv,底面积为π*r^2,这里的r即为x,根据函数可将x用y表示出来,即为x=sqrt(y),平方就为y,积分就为V=∫dv==∫π*(x^2)dy=∫π*ydy,积分区域为(0,1),结果算出来为π/2

我们先考虑一个关于y轴对称的圆筒,内壁半径是r1,外壁半径是r2,厚度是\delta x,高度是h. 那么它的体积是\pi * r2^2 * h-\pi * r1^2 * h=2*\pi * r * h * \delta x,其中r=(r1+r2)/2.
下面我们来看y=f(x)绕y轴旋转的体积。把x轴切成\delta x的小块,这样在曲线f(xi)~f(xi+\delta x)绕y轴旋...

全部展开

我们先考虑一个关于y轴对称的圆筒,内壁半径是r1,外壁半径是r2,厚度是\delta x,高度是h. 那么它的体积是\pi * r2^2 * h-\pi * r1^2 * h=2*\pi * r * h * \delta x,其中r=(r1+r2)/2.
下面我们来看y=f(x)绕y轴旋转的体积。把x轴切成\delta x的小块,这样在曲线f(xi)~f(xi+\delta x)绕y轴旋转得到的体积Vi我们估计为2*\pi * xi * f(xi) * \delta x. 把所有Vi这样的小块加起来求极限
lim (n->infinite) V1+V2+...+Vn
= lim (n->infinite) 2*\pi * xi * f(xi) * \delta x
= \integral 2*\pi * x * f(x)* dx.
\integral 是积分号。\pi是3.1415那个。\delta x 是‘三角形x’。这个不用我说也应该知道吧。

收起

大概意思是用微元法证明平面图形绕Y轴旋转所成的旋转体体积 已知关于x的在曲线f(x)上取一小段并由它向x轴作射影,得以小曲边梯形,近似看作矩形,