数学有哪几种简便运算方法?(除了加、乘法交换、结合律,减、除法的性质)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 15:24:11
数学有哪几种简便运算方法?(除了加、乘法交换、结合律,减、除法的性质)
xXrH=@-ѱml`|k=m`OfU%aOVBvnDt]22O҇OqOtڲYG"wߖ|'Niwjd(]O[{lz:ynKq돎D%/^MqQvd6-~?䧏x ^ ׿s㏶ oT=7(Jİ_5{~I(5A{S~e oR,[o0;ѼQ-zH.X"|ۃ)oК*[ޤ \mN,s3x7}&G,zy˒mV<(Q\5“MZgޠeE >C)?*õ5n}s"xPc"ʿwZ_n 􆗦7`!#*L4pzbՊnNeX7aw #"fٌܛ_dU4rT=Mi%gSW5TJcdoЮ[6*, =coa2@Q}5v< ~FQ)>B?IȮð|CBl(v@n5PYB=GEpfk=<2+ eO)NMm](pDgK~/7,lAaEk6|`@=}y|^MY/v04".rJ8P+3g4G+brO?8yo&eDw)pH]َ nwBq\(+ kNx]iY䷃L1M!J;(Me4% LJZ}+gu:U1(lzn(>('yvfNt6Nk <{²rD 3QssXADB`ROYT6q+<.x< fYH,]VG4sC7|F]c|>E)O!}$h r3OV VzQmXq]|7@A.xȌֲ: dH2ZiZ?^A"HDy),?-[h}J)a9>6yԼ+4湇 3,=Q{=(8)Qx5 הJ٤d{BdŵTZd˽nhQ< 60E0bdZ ' e5_ I :#{nJWSGRC <~FTl[58YVDO0SE u{ wEf@HC8WdC: ]!RB^LJP"&=7ft߀ 1ozz*JZMa9*eB8+f.xiTyY!!;-:!4iP_7Ћq>BuiP;7BHoNx\},^U z.W-:(c:|1?ٜrz! NBN^n y$Aú~|- j9V5 `"׌Hhb7ygxU4jrMGwԚ^LX6~cS$xgE}`sr ޅJLyXQ{c9 36~oh.f"M0JMv4cܟ>ZFrǎ}V(`v#‰9ɕ:;MRJ{t^[huE;"l?0NTyԞ+W6 1޹C{.P Ad.=O}:!܋ o/Q &8 aD橝y0e1'cMJF6}o0;"7܇3r偒#9oEt}zOhUk4 H}?>ҷ*;

数学有哪几种简便运算方法?(除了加、乘法交换、结合律,减、除法的性质)
数学有哪几种简便运算方法?(除了加、乘法交换、结合律,减、除法的性质)

数学有哪几种简便运算方法?(除了加、乘法交换、结合律,减、除法的性质)
一、基础性训练 从小学生不同的年龄心理特点上看,口算的基础要求不同.低中年级主要在一二位数的加法.高年级把一 位数乘两位数的口算作为基础训练效果较好.具体口算要求是,先将一位数与两位数的十位上的数相乘,得到 的三位数立即加上一位数与两位数的个位上的数相乘的积,迅速说出结果.这项口算训练,有数的空间概念的 练习,也有数位的比较,又有记忆训练,在小学阶段可以说是一项数的抽象思维的升华训练,对于促进思维及 智力的发展是很有益的.这项练习可以安排在两段的时间里进行.一是早读课,一是在家庭作业的最后安排一 组.每组是这样划分的:一位数任选一个,对应两位数中个位或十位都含有某一个数的.每组有18道,让学生 先写出算式,口算几遍后再直接写出得数.这样持续一段时间后(一般为2~3个月),其口算的速度、正确率 也就大大提高了. 二、针对性训练 小学高年级数的主体形式已从整数转到了分数.在数的运算中,异分母分数加法是学生费时多又最容易出 差错的地方,也是教与学的重点与难点.这个重点和难点如何攻破呢?经研究比较和教学实践证明,把分数运 算的口算有针对地放在异分母分数加法上是正确的.通过分析归纳,异分母分数加(减)法只有三种情况,每 种情况中都有它的口算规律,学生只要掌握了,问题就迎刃而解了. 1.两个分数,分母中大数是小数倍数的. 如“1/12+1/3”,这种情况,口算相对容易些,方法是:大的分母就是两个分母的公分母,只要把小的分 母扩大倍数,直到与大数相同为止,分母扩大几倍,分子也扩大相同的倍数,即可按同分母分数相加进行口算:1/12+1/3=1/12+4/12=5/12 2.两个分数,分母是互质数的.这种情况从形式上看较难,学生也是最感头痛的,但完全可以化难为易: 它通分后公分母就是两个分母的积,分子是每个分数的分子与另一个分母的积的和(如果是减法就是这两个积的差),如2/7+3/13,口算过程是:公分母是7×13=91,分子是26(2×13)+21(7×3)=47,结果是47/91. 如果两个分数的分子都是1,则口算更快.如“1/7+1/9”,公分母是两个分母的积(63),分子是两个分母 的和(16). 3.两个分数,两个分母既不是互质数,大数又不是小数的倍数的情况.这种情况通常用短除法来求得公分 母,其实也可以在式子中直接口算通分,迅速得出结果.可用分母中大数扩大倍数的方法来求得公分母.具体 方法是:把大的分母(大数)一倍一倍地扩大,直到是另一个分母小数的倍数为止.如1/8+3/10把大数10,2 倍、3倍、4倍地扩大,每扩大一次就与小数8比较一下,看是否是8的倍数了,当扩大到4倍是40时,是8的倍数 (5倍),则公分母是40,分子就分别扩大相应的倍数后再相加(5+12=17),得数为17/40. 以上三种情况在带分数加减法中口算方法同样适用. 三、记忆性训练 高年级计算内容具有广泛性、全面性、综合性.一些常见的运算在现实生活中也经常遇到,这些运算有的 无特定的口算规律,必须通过强化记忆训练来解决.主要内容有: 1.在自然数中10~24每个数的平方结果; 2.圆周率近似值3.14与一位数的积及与12、15、16、25几个常见数的积; 3.分母是2、4、5、8、10、16、20、25的最简分数的小数值,也就是这些分数与小数的互化. 以上这些数的结果不管是平时作业,还是现实生活,使用的频率很高,熟练掌握、牢记后,就能转化为能 力,在计算时产生高的效率. 四、规律性的训练 1.运算定律的熟练掌握.这方面的内容主要有“五大定律”:加法的交换律、结合律;乘法的交换律、结 合律、分配律.其中乘法分配律用途广形式多,有正用与反用两方面内容,有整数、小数、分数的形式出现. 在带分数与整数相乘时,学生往往忽略了乘法分配律的应用使计算复杂化.如2000/16×8,用了乘法分配律可 以直接口算出结果是1001.5,用化假分数的一般方法计算则耗时多且容易错.此外还有减法运算性质和商不变 性质的运用等. 2.规律性训练.主要是个位上的数是5的两位数的平方结果的口算方法(方法略). 3.掌握一些特例.如较常遇见的在分数减法中,通分后分子部分不够减,往往减数的分子比被减数的分子 大1、2、3等较小的数时,不管分母有多大,均可以直接口算.如12/7-6/7它的分子只相差1,它差的分子一定 比分母少1,结果不用计算是6/7.又如:194/99-97/99,分子部分相差2,它差的分子就比分母少2,结果就是 97/99.减数的分子比被减数的分子大3、4、5等较小的数时,都可以迅速口算出结果.又如任意两位数与1.5积 的口算,就是两位数再加上它的一半. 五、综合性训练 1.以上几种情况的综合出现; 2.整数、小数、分数的综合出现; 3.四则混合的运算顺序综合训练. 综合性训练有利于判断能力、反应速度的提高和口算方法的巩固. 当然,以上这些情况,要使学生熟练掌握,老师首先要娴熟运用自如,指导时才能得心应手,提高效果. 同时训练应持之以恒,三天打渔两天晒网,是难以收到预期效果的.