顾客在车站候车室等车并且排队的乘客按一定的速度增加,检查速度也一定.当车站放一个检票口,检票口每分钟可检10人,需要半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 10:53:05
顾客在车站候车室等车并且排队的乘客按一定的速度增加,检查速度也一定.当车站放一个检票口,检票口每分钟可检10人,需要半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所
xV[RVJ>* $U!%RT0'= ~<,$Q+}y 9+lL UӧOwqx|4G?+W-3tEQx-Y=e:8 t{Mj#oj)lQ|Ƒg?"Ndkob`R"xk9q'7CuC;t1~N 5$!WG8>.id>dM?)?f߀TUz*P6>ne%S<5Ei*Y -\p*iM?+g;b_ԡH4_ѡ`.Iώ6\Zh!;Wԃv/KJ9# Jtȇf`I?-N9ѳd5ugyGIPV)ܧA:P"eFϏmP":/M ڪ 8x74So}Ox#NjWRfP5U8(¤eʕ-m0Td9D'rM G'= ヱ|oKp4S ez8a!2|vߎ[[yC:H`o ]fHu~-_ۙaq/ aE+,G6E5̢Ujnܕ!H?1enڛhRB33zaP2iBUۓ!bQd3!,Da +&YwԄKgsjY4pAZ5i7o{8(Yz\IѮҗOj+/)Ġ&sꅡ.j+'tWJTn s!{E~3~NyC7Cf5@jjX؍P&\M& ^-~2ݸ.yb}Uu$vL֞Fe("}u?9

顾客在车站候车室等车并且排队的乘客按一定的速度增加,检查速度也一定.当车站放一个检票口,检票口每分钟可检10人,需要半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所
顾客在车站候车室等车并且排队的乘客按一定的速度增加,检查速度也一定.当车站放一个检票口,检票口每分钟可检10人,需要半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有乘客解决,求增加人数的速度及原来的人数 (用一元一次方程解)

顾客在车站候车室等车并且排队的乘客按一定的速度增加,检查速度也一定.当车站放一个检票口,检票口每分钟可检10人,需要半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所
牛吃草问题又称为消长问题或牛顿牧场,是17世纪英国伟大的科学家牛顿提出来的.典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天.由于吃的天数不同,草又是天天在生长的,所以草的存量随牛吃的天数不断地变化.解决牛吃草问题常用到四个基本公式,分别是∶
  (1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
  (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
  (3)吃的天数=原有草量÷(牛头数-草的生长速度);
  (4)牛头数=原有草量÷吃的天数+草的生长速度.
  这四个公式是解决消长问题的基础.
  由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量.牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的.正是由于这个不变量,才能够导出上面的四个基本公式.
  牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草.由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天.
  解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题.
  这类问题的基本数量关系是:
  1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量.
  2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草.
  你直接找我

顾客在车站候车室等车并且排队的乘客按一定的速度增加,检查速度也一定.当车站放一个检票口,检票口每分钟可检10人,需要半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所 牛吃草问题(有改动)旅客在车站候车室等车,并且排队的乘客按一定速度增加,检查速度也一定,当车站放一个检票口,需用半小时把所有乘客解决完毕,当开放2个检票口时,只要10分钟就把所有 牛吃草问题,说明思路!这是写论文的!旅客在车站候车室等候检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需用半小时可将待检旅客全部检票进站;同时开 帮忙解小学数学题(请列出算式并说明原因)旅客在车站候车室等候检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需用半小时可将待检旅客全部检票进站 帮我解一个数学题 要列出公式- 旅客在车站候车室等候检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需要半小时可将待检旅客全部检票进站;同时开放两 旅客在车站候车室等候检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需用半小时可将待检旅客全部检票进站;同时开放两个检票口,只需10分钟便可将旅客 旅客在车站候车室等待检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需用半小时可将待检旅客全部检票进站.同时开放2个检票口,只需10分钟便可将旅客全 旅客在车站候车室等候检票,并且排队的旅客按照一定的速度在增加,检票速度一定,当车站开放一个检票口,需用半个小时可将待检旅客全部检票进站;同时开放两个检票口,只需10分钟便可将旅 一道数学题·旅客在车站候车室等候检票,并且排队的旅客按照一定速度在增加,检票速度已定,当开放一个检票口,需要30分钟可将待检旅客全部检票进站,同时开放两个检票口,只需10分钟便可将 一道数学题·旅客在车站候车室等候检票,并且排队的旅客按照一定速度在增加,检票速度已定,当开放一个检票口,需要30分钟可将待检旅客全部检票进站,同时开放两个检票口,只需10分钟便可将 旅客在车站候车室等候检票,并且排队的旅客按照一定速度在增加,检票速度已定,当开放一个检票口,接上回,需要30分钟可将待检旅客全部检票进站,同时开放两个检票口,只需10分钟便可将旅客 旅客在车站候车室等候检票,并且排队的旅客按照一定速度在增加,检票速度已定,当开放一个检票口,需要30分钟可将待检旅客全部检票进站,同时开放两个检票口,只需10分钟便可将旅客全部进站 旅客在车站候车室等候检票,并且排队的旅客按照一定速度在增加,检票速度已定,当开放一个检票口,需要30分钟可将待检旅客全部检票进站,同时开放两个检票口,只需10分钟便可将旅客全部进站 数学检票问题旅客在车站候车室等候检票,并且排队的旅客按照一定速度在增加,检票速度已定,当开放一个检票口,需要30分钟可将待检旅客全部检票进站,同时开放两个检票口,只需10分钟便可将 要步骤和结果 思路3Q在车站开始检票时,有a(a>0)名旅客在候车室排队,开始检票后仍有旅客来排队,假设按固定的速度增加,检票速度也固定,在开一个检票口,需30分钟可以检完,若开放2个需10分 在车站开始检票时,有120名旅客在候车室排队等候捡票进站,设旅客按固定的速度增加,检票口的速度也是固定的,诺开一个窗口,则需30分钟可将排队等候检票的旅客全部检票完毕;诺开两个人窗 在车站开始检票时,有120名旅客在候车室排队等候捡票进站设旅客按固定的速度增加,检票口的速度也是固定的,诺开一个窗口,则需30分钟可将排队等候检票的旅客全部检票完毕;诺开两个人窗 在车站开始检票时,有120名旅客在候车室排队等候捡票进站,设旅客按固定的速度增加,检票口的速度也是固定的,诺开一个窗口,则需30分钟可将排队等候检票的旅客全部检票完毕;诺开两个人窗