matlab 非线性 参数 方程组 2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I这是我需要求解的两个等式,所有字母均是各类参数,我想确定他们之间的关系也就是将某个参数用

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 12:09:20
matlab 非线性 参数 方程组 2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I这是我需要求解的两个等式,所有字母均是各类参数,我想确定他们之间的关系也就是将某个参数用
xXn@SVཅDA"R[URJB&(i%JP}Gc/ΌXYl%={#5f,Nx9^1^ t0z-oZgWͳW%%|-qγ;NΛ\%d(o;5JJ,Nyuiq\/ߡaͿ:sջn=5^GdvNFwv9g?3FSg|8m0>2[%yڣ&@2az/O3 mQ%khhXQs J ELθ!A͖e42o_Gm3%d5",)yRPJ K1A[ff[/=d"SLn3^ lմ@zN=GAIP/@ LJ8|GBH˰yU"4(mDZBFXPa4CHiJ(=JbmMJ  Jl AV҈GGA a`tDi,&X鐸`=\z"Ƙa5.H>+ I

matlab 非线性 参数 方程组 2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I这是我需要求解的两个等式,所有字母均是各类参数,我想确定他们之间的关系也就是将某个参数用
matlab 非线性 参数 方程组
2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)
w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I
这是我需要求解的两个等式,所有字母均是各类参数,我想确定他们之间的关系也就是将某个参数用其余的参数表示,例如:w=f(V,m,I,Lf,Lr,Kr,Kf)求出f()是什么,还请高手赐教

matlab 非线性 参数 方程组 2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I这是我需要求解的两个等式,所有字母均是各类参数,我想确定他们之间的关系也就是将某个参数用
>>m= solve('2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)','m')
m =
I*(Kf+Kr)/(2*s*w*I*V-Lf^2*Kf-Lr^2*Kr)
>> [m I]=solve('2*s*w=(m*(Lf^2*Kf+Lr^2*Kr)+I*(Kf+Kr))/(m*I*V)','w^2=(Kf*Kr*L^2)/(m*I*V^2)+(Lr*Kr-Lf*Kf)/I','m','I')
m =
[ 2*(Kf*Kr*L^2+1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lr*Kr-1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lf*Kf)/w^2*(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)/(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]
[ 2*(Kf*Kr*L^2+1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lr*Kr-1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))*V*Lf*Kf)/w^2*(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)/(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]
I =
[ 1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2+(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]
[ 1/2/(2*V*s*w*Lr*Kr-2*V*s*w*Lf*Kf-Lf^2*Kf*w^2-Lr^2*Kr*w^2)*(Kf*V*Lr*Kr-V*Lf*Kf^2+V*Lr*Kr^2-Kr*V*Lf*Kf-2*s*w*Kf*Kr*L^2-(-4*Kr^2*V*Lf*Kf^2*s*w*L^2+4*s^2*w^2*Kf^2*Kr^2*L^4-2*Kf^3*V^2*Lr*Kr*Lf-4*Kf^2*V^2*Lr*Kr^2*Lf+4*Kf^2*V*Lr*Kr^2*s*w*L^2-4*V*Lf*Kf^3*s*w*Kr*L^2-2*V^2*Lr*Kr^3*Lf*Kf+4*V*Lr*Kr^3*s*w*Kf*L^2+Kf^2*V^2*Lr^2*Kr^2+2*Kf*V^2*Lr^2*Kr^3+2*V^2*Lf^2*Kf^3*Kr+Kr^2*V^2*Lf^2*Kf^2+V^2*Lf^2*Kf^4+V^2*Lr^2*Kr^4-4*Lf^2*Kf^2*w^2*Kr^2*L^2-4*Lf^2*Kf^3*w^2*Kr*L^2-4*Lr^2*Kr^3*w^2*Kf*L^2-4*Lr^2*Kr^2*w^2*Kf^2*L^2)^(1/2))/V]
>>