谁有函数的总结二次函数和三角函数的总结,

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 11:40:28
谁有函数的总结二次函数和三角函数的总结,
xXNI~Lew(ݕ"i 0a@H0\Ř@Wt_S]3ힱ"LwץN*3yؚS94Pk`;[T'u^o~;Mqfdqc:~>O³`c27v&Nfˑj{Sg݆#,˹ #bWq59/]ߛT>[֯X٪ڒ\WGuV8Ć@~[VoBo/Kp/2{\JM ~%]򎬬`vWff,_.j} oÃ]4`E,Je"2|Ŭ* J1$awŚ,{UmM{~4riBkgQɁEfO$Doޥ9(DD&o+Ɣ#[k Ӫu@Pሇ;@F" Nb(.NXPE"AQ}NnGڷd!XFrpE7Kdё%lTmó9x^ h0=:l z@`Д M'HJB0RaIծBfT5э*-a;j-qf+Lzt!P(_SC:.Þ#=B %Ѩ]MVP?ѕ̨kpL^% яVSa)X<+QR8#(;H톗xVNNzKiu Eklj`'4pê=P)ư}D)s$m~1/. GG 8A+g>YJlAn4rzɠ0Fi`+T[{Aɠ $'x0s9q~{FmIz-aBgzļVh. 8%%]4*h߯yOY嫗.WEҒYOZ s Csgrlc>YR

谁有函数的总结二次函数和三角函数的总结,
谁有函数的总结
二次函数和三角函数的总结,

谁有函数的总结二次函数和三角函数的总结,
二次函数知识点总结
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.二次函数 的性质
(1)抛物线 的顶点是坐标原点,对称轴是 轴.
(2)函数 的图像与 的符号关系.
①当 时 抛物线开口向上 顶点为其最低点;
②当 时 抛物线开口向下 顶点为其最高点.
(3)顶点是坐标原点,对称轴是 轴的抛物线的解析式形式为 .
3.二次函数 的图像是对称轴平行于(包括重合) 轴的抛物线.
4.二次函数 用配方法可化成: 的形式,其中 .
5.二次函数由特殊到一般,可分为以下几种形式:① ;② ;③ ;④ ;⑤ .
6.抛物线的三要素:开口方向、对称轴、顶点.
① 的符号决定抛物线的开口方向:当 时,开口向上;当 时,开口向下;
相等,抛物线的开口大小、形状相同.
②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
(1)公式法: ,∴顶点是 ,对称轴是直线 .
(2)配方法:运用配方的方法,将抛物线的解析式化为 的形式,得到顶点为( , ),对称轴是直线 .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
9.抛物线 中, 的作用
(1) 决定开口方向及开口大小,这与 中的 完全一样.
(2) 和 共同决定抛物线对称轴的位置.由于抛物线 的对称轴是直线
,故:① 时,对称轴为 轴;② (即 、 同号)时,对称轴在 轴左侧;③ (即 、 异号)时,对称轴在 轴右侧.
(3) 的大小决定抛物线 与 轴交点的位置.
当 时, ,∴抛物线 与 轴有且只有一个交点(0, ):
① ,抛物线经过原点; ② ,与 轴交于正半轴;③ ,与 轴交于负半轴.
以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在 轴右侧,则 .
10.几种特殊的二次函数的图像特征如下:
函数解析式 开口方向 对称轴 顶点坐标

当 时
开口向上
当 时
开口向下 ( 轴)
(0,0)

( 轴)
(0, )


( ,0)


( , )


( )
11.用待定系数法求二次函数的解析式
(1)一般式: .已知图像上三点或三对 、 的值,通常选择一般式.
(2)顶点式: .已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与 轴的交点坐标 、 ,通常选用交点式: .
12.直线与抛物线的交点
(1) 轴与抛物线 得交点为(0, ).
(2)与 轴平行的直线 与抛物线 有且只有一个交点( , ).
(3)抛物线与 轴的交点
二次函数 的图像与 轴的两个交点的横坐标 、 ,是对应一元二次方程 的两个实数根.抛物线与 轴的交点情况可以由对应的一元二次方程的根的判别式判定:
①有两个交点 抛物线与 轴相交;
②有一个交点(顶点在 轴上) 抛物线与 轴相切;
③没有交点 抛物线与 轴相离.
(4)平行于 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为 ,则横坐标是 的两个实数根.
(5)一次函数 的图像 与二次函数 的图像 的交点,由方程组 的解的数目来确定:①方程组有两组不同的解时 与 有两个交点; ②方程组只有一组解时 与 只有一个交点;③方程组无解时 与 没有交点.
(6)抛物线与 轴两交点之间的距离:若抛物线 与 轴两交点为 ,由于 、 是方程 的两个根,故

hehe
我有
但是怎么给你啊??
我是书面版的~~~~~~~~~~`