圆X²+Y²-4X+6Y=0和圆X²+Y²-6X=0交于A,B两点,则AB的垂直平分线方程为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 23:30:58
圆X²+Y²-4X+6Y=0和圆X²+Y²-6X=0交于A,B两点,则AB的垂直平分线方程为
x){:-BZ;BDhE<ԃE,ɮ%Ov98=ٱyN3jy:-Own~|gv>_d."}X_`gCO?v<}Pӓf>Xlz MF:`]NϦyTko|dRtf0v 3 41 c:jW R``Q O7l\ PU/.H̳-

圆X²+Y²-4X+6Y=0和圆X²+Y²-6X=0交于A,B两点,则AB的垂直平分线方程为
圆X²+Y²-4X+6Y=0和圆X²+Y²-6X=0交于A,B两点,则AB的垂直平分线方程为

圆X²+Y²-4X+6Y=0和圆X²+Y²-6X=0交于A,B两点,则AB的垂直平分线方程为
先求出两个交点分别是(0,0)和(27/5,-9/5)
AB斜率是-1/3,
所以垂直平分线是通过(27/10,-9/10)且斜率为3的直线,
方程为y+9/10 = 3(x-27/10)
也就是y = 3x - 9