2012年北京市海淀一模数学第22题,小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 19:19:28
2012年北京市海淀一模数学第22题,小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样
xTrAl *Y<7X)! YT6% 0,/I_v&F*Qg{=6k N z&y <^pp 2@~:xA}3?C ܨ(:G=^S: **!C?6q\0PT.>BڝVT\ ISGL;#\R,<,_^, QE"},w,-pwy cZO

2012年北京市海淀一模数学第22题,小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样
2012年北京市海淀一模数学第22题,
小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样思考的:要解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可,他利用图形变换解决了这个问题,其解题思路是延长CO到E,使得OE=CO,连接BE,可证△OBE≌△OAD,从而得到的△BCE即是以AD、BC、OC+OD的长度为三边长的三角形(如图2).请你回答:图2中的△BCE的面积等于 请你尝试用平移、旋转、翻折的方法,如图3,已知△ABC,分别以AB、AC、BC为边向外作正方形ABDE、AGFC、BCHI,连接EG、FH、ID.(1)在图3中利用图形变换画出并指明以EG、FH、ID的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC的面积为1,则以EG、FH、ID的长度为三边长的三角形的面积等于   要过程!

2012年北京市海淀一模数学第22题,小明遇到这样一个问题:如图1,△ABO和△CDO均为等腰直角三角形,∠AOB=∠COD=900,若△BOC的面积为1,试求以AD、BC、OC+OD的长度为三边长的三角形的面积.小明是这样
图呢?把图发上来,我给你解答.