换元法不定积分∫(1-x^2)^1/2dx令x=sint,则(1-x^2)^1/2=[1-(sin^2)t]^1/2=cost,dx=costdt原式=∫(cos^2)tdt=1/2∫(1+cos2t)dt=1/2[t+(1/2)sin2t]+c=1/2[arcsinx+x(1-x^2)^1/2]+c其中∫(1+cos2t)dt怎么等于[t+(1/2)sin2t]+c?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 03:50:23
换元法不定积分∫(1-x^2)^1/2dx令x=sint,则(1-x^2)^1/2=[1-(sin^2)t]^1/2=cost,dx=costdt原式=∫(cos^2)tdt=1/2∫(1+cos2t)dt=1/2[t+(1/2)sin2t]+c=1/2[arcsinx+x(1-x^2)^1/2]+c其中∫(1+cos2t)dt怎么等于[t+(1/2)sin2t]+c?
xRN@,$v!$H6ЈK<Z( BC K| ;^+"*ݢ{g>5vצnQ6.mYN-rQZF$0[H".Y@KHEME- f{j(@*iB?LRHIR(&tA`++1{hѱ_oI'eu="vZ" aQ^CW>Ћ 5@+"Dij*;Qw'81L܊o ~TO%1?ߠքuS6M saAm*LTmwmĽ?lFdY "1]`;$x ~uΰ,&0, hl@Wa'jz&wdl [;>.v헙%vo*6ǑBi:=짇D<`0G{;ht|_/J*^

换元法不定积分∫(1-x^2)^1/2dx令x=sint,则(1-x^2)^1/2=[1-(sin^2)t]^1/2=cost,dx=costdt原式=∫(cos^2)tdt=1/2∫(1+cos2t)dt=1/2[t+(1/2)sin2t]+c=1/2[arcsinx+x(1-x^2)^1/2]+c其中∫(1+cos2t)dt怎么等于[t+(1/2)sin2t]+c?
换元法不定积分
∫(1-x^2)^1/2dx
令x=sint,则(1-x^2)^1/2=[1-(sin^2)t]^1/2=cost,dx=costdt
原式=∫(cos^2)tdt=1/2∫(1+cos2t)dt
=1/2[t+(1/2)sin2t]+c
=1/2[arcsinx+x(1-x^2)^1/2]+c
其中∫(1+cos2t)dt怎么等于[t+(1/2)sin2t]+c?

换元法不定积分∫(1-x^2)^1/2dx令x=sint,则(1-x^2)^1/2=[1-(sin^2)t]^1/2=cost,dx=costdt原式=∫(cos^2)tdt=1/2∫(1+cos2t)dt=1/2[t+(1/2)sin2t]+c=1/2[arcsinx+x(1-x^2)^1/2]+c其中∫(1+cos2t)dt怎么等于[t+(1/2)sin2t]+c?
(1+cos2t)dt = 1/2(1+cos2t)d2t
如果下面你还不知道怎么解,就无言了,基本常识的问题,你居然都不给分,抗议下,这种问题确实不该问,我只不过想试试,微积分那点基本知识我是不都忘光了,哥们,你比我忘的还快...

不定积分也在这里问啊?
谁能给你慢慢写啊,还没分···
自己好好看看书吧!