已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)求椭圆上动点p到直线{x=2-3t,y=2+2t(t为参数)的最短距离

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 17:40:18
已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)求椭圆上动点p到直线{x=2-3t,y=2+2t(t为参数)的最短距离
xSMoQ+ML dǾĤZMіP6mI [!ZU֤#pt_\f2Enfǹ{}dv!;o3vl_eEjDH-&L`jAA8]]-3KRmVNi%Cc!=9 ʨJխ/ٿK=l2Yͩv{R~ y

已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)求椭圆上动点p到直线{x=2-3t,y=2+2t(t为参数)的最短距离
已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)
求椭圆上动点p到直线{x=2-3t,y=2+2t(t为参数)的最短距离

已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)求椭圆上动点p到直线{x=2-3t,y=2+2t(t为参数)的最短距离
因为直线为{x=2-3t,y=2+2t}(t为参数)
所以,化成直角坐标方程为2x+3y-10=0
因为p在椭圆上,椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)}
所以p点坐标为(3cosθ,2sinθ )
所以,由点到直线距离的公式得
距离d=I2×3cosθ+3×2sinθ-10 I/√(3²+2²)
=I6cosθ+6sinθ-10 I/√13
=I6√2sin(θ+45°)-10I/√13
因为θ∈[0,360°)
所以10-6√2≤I6√2sin(θ+45°)-10I≤10+6√2
所以,距离d的最小值=(10-6√2)/√13=(-6√26+10√13)/13

椭圆方程为x^2/9+y^2/4=1,直线方程为2x+3y-10=0。
将该直线向椭圆平移,直至与椭圆相切,该切点即为到直线距离最短的点。
设直线y=-2/3x+k,与椭圆方程联立,得一二次方程,该二次方程只有一解。
由delta=0可求出k=2倍根号2,最短距离即为两条平行线之间的距离。
可求出dmin=10/13根号3-6/13根号6。...

全部展开

椭圆方程为x^2/9+y^2/4=1,直线方程为2x+3y-10=0。
将该直线向椭圆平移,直至与椭圆相切,该切点即为到直线距离最短的点。
设直线y=-2/3x+k,与椭圆方程联立,得一二次方程,该二次方程只有一解。
由delta=0可求出k=2倍根号2,最短距离即为两条平行线之间的距离。
可求出dmin=10/13根号3-6/13根号6。

收起

知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)焦点坐标 椭圆的参数方程x=3sin@ y=2cos@的普通方程 已知椭圆的参数方程为x=2√2cosθ,y=√5sinθ(θ为参数),求椭圆内以点P(2,-1)为中已知椭圆的参数方程为x=2√2cosθ,y=√5sinθ(θ为参数),求椭圆内以点P(2,-1)为中点的弦所在的直线方程 已知椭圆C的方程为(x+2sin^2θ)^2/4+(y-4cosθ)^2/16=1(θ为参数),求椭圆中心的轨已知椭圆C的方程为(x+2sin^2θ)^2/4+(y-4cosθ)^2/16=1(θ为参数),求椭圆中心的轨迹的参数方程和普通方程 已知椭圆的参数方程{x=3cosθ,y=2sinθ (θ为参数)求椭圆上动点p到直线{x=2-3t,y=2+2t(t为参数)的最短距离 已知椭圆C的方程为 ((x+2Sin^2 Q)^2) /4 +((y-4COS Q)^2) /16=1 (Q为参数),求椭圆中心的轨迹参数方程和普通方程. 已知椭圆的参数方程为x=2√2cosθ,y=√5sinθ(θ为参数),求椭圆内以点P(2,-1)为中点的弦所在的直线方程.一定要用参数解,用参数方法,不要用点差法之类的! 已知曲线c1的参数方程x=2cosϕ y=3sinϕ 选择题参数方程{x=4cosθ;y=3sinθ表示的曲线是什么样的椭圆,要有离心率,焦点. 参数方程:椭圆x=1+4cosθ和y=2+3sinθ的长轴上两个顶点的坐标是 椭圆方程(x=4cosθ,y=3sinθ)(θ为参数)的准线方程为解答x=4cosθ,y=3sinθ(θ为参数)消参,得椭圆:x^2/16+y^2/9=1不懂消参怎么弄的 当点B(x',y')在椭圆x=2cosθ,y=3sinθ(θ为参数)上运动时,求动点p(x'+y’,x’-y’)的轨迹的普通方程 当点B(x',y')在椭圆x=2cosθ,y=3sinθ(θ为参数)上运动时,求动点p(x'+y’,x’-y’)的轨迹的普通方程 已知曲线C的参数方程为x=2cosθ y=3sinθ θ为参数,0≤θ 椭圆的参数方程椭圆参数方程x=acosθ y=bsinθ中的θ数学意义到底是什么呢仅仅是个参数吗? 已知椭圆的参数方程 x=acosθ y=bsinθ ,椭圆顺时针旋转了t度,求椭圆新的参数方程急求最后的表达式, 求椭圆4x^2+y^2=16的参数方程(设x=2cosψ,ψ是参数) 设x=2cosψ,ψ是参数,求椭圆4x^2+y^2=16的参数方程