在三角形ABC中,AB=5,BC=3,AC=4,PQ平行于AB,点P在AC上(与点A、C不重合),点Q在BC上.问:在AB上是否存在一点M使得三角形PQM为等腰直角三角形?若不存在,请简要说明理由

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 04:34:06
在三角形ABC中,AB=5,BC=3,AC=4,PQ平行于AB,点P在AC上(与点A、C不重合),点Q在BC上.问:在AB上是否存在一点M使得三角形PQM为等腰直角三角形?若不存在,请简要说明理由
xUmoV+(R'Lt}yι<<uWk͝G$Ӛ{D$hgHgD͍yQb"|v֞Ӛ`55 ̝N]pT>l)@Ƶ):YבHƵf+0]_Ϸ ;0ڔ=mWJɨO-af%A:69,{8SB/P=ց4v;zoA>(קl\̫ztQ[F3Zyq *OAW_ ۝:h簡b.)q|5@|Mt2k'a+_p6{tZGc_IuC\$:|n7{>/xH/\.d8gƅzu^AqO_n*I3n4>r 7fHr\5ysuW71C2i,Om.٨o6=o d||+DGғj$eo:'&'^Q?x,s:# {EݣcA"

在三角形ABC中,AB=5,BC=3,AC=4,PQ平行于AB,点P在AC上(与点A、C不重合),点Q在BC上.问:在AB上是否存在一点M使得三角形PQM为等腰直角三角形?若不存在,请简要说明理由
在三角形ABC中,AB=5,BC=3,AC=4,PQ平行于AB,点P在AC上(与点A、C不重合),点Q在BC上.
问:在AB上是否存在一点M使得三角形PQM为等腰直角三角形?
若不存在,请简要说明理由

在三角形ABC中,AB=5,BC=3,AC=4,PQ平行于AB,点P在AC上(与点A、C不重合),点Q在BC上.问:在AB上是否存在一点M使得三角形PQM为等腰直角三角形?若不存在,请简要说明理由

M点存在,但取决于点P,Q的位子(也可以说取决于PQ的长度) 

演算如下: 

AB=5,BC=3,AC=4 

所以:三角形ABC为RT三角形,C为直角 

按图1 

其中PQ=PM,PQ垂直PM,则:三角形PQM为等腰直角三角形 

设:PQ=PM=x 

因:CE*AB=AC*BC 

CE=12/5 

因:CD/CE=PQ/AB 

((12/5)-x)/(12/5)=x/5 

x=60/37 

即:当PQ=60/37时,AB上存在一点M使得三角形PQM为等腰直角三角形 

按图2 

PM=QM,PM垂直QM,则:三角形PQM为等腰直角三角形 

设:PQ=2x,则FM=x 

因:CD/CE=PQ/AB 

((12/5)-x)/(12/5)=2x/5 

x=60/49 

2x=120/49 

即:当PQ=120/49时,AB上存在一点M使得三角形PQM为等腰直角三角形 

除以上两种情况外,满足条件的M不存在

AB=5,BC=3,AC=4
可以判断出这是一个直角三角形,角c=90度
m是存在的

将三角形放入坐标系中,A(4,0);B(0,0);C(0,3)
P(x,0);Q(0,y)
M在(4,0)和(0,3)所定的直线上
具体自己算吧

存在
做mq垂直pq,使mq=pq 解pq=60/37
做mp垂直pq,使mp=pq pq=60/37
mp垂直qm,用三角形定理自己算吧

M点存在,但取决于点P,Q的位子(也可以说取决于PQ的长度)
演算如下:
AB=5,BC=3,AC=4
所以:三角形ABC为RT三角形,C为直角
按图1
其中PQ=PM,PQ垂直PM,则:三角形PQM为等腰直角三角形
设:PQ=PM=x
因:CE*AB=AC*BC
CE=12/5
因:CD/CE=PQ/AB ...

全部展开

M点存在,但取决于点P,Q的位子(也可以说取决于PQ的长度)
演算如下:
AB=5,BC=3,AC=4
所以:三角形ABC为RT三角形,C为直角
按图1
其中PQ=PM,PQ垂直PM,则:三角形PQM为等腰直角三角形
设:PQ=PM=x
因:CE*AB=AC*BC
CE=12/5
因:CD/CE=PQ/AB
((12/5)-x)/(12/5)=x/5
x=60/37
即:当PQ=60/37时,AB上存在一点M使得三角形PQM为等腰直角三角形
按图2
PM=QM,PM垂直QM,则:三角形PQM为等腰直角三角形
设:PQ=2x,则FM=x
因:CD/CE=PQ/AB
((12/5)-x)/(12/5)=2x/5
x=60/49
2x=120/49
即:当PQ=120/49时,AB上存在一点M使得三角形PQM为等腰直角三角形
除以上两种情况外,满足条件的M不存在

收起