数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:t0=0; t(n+1)=tn+(25-tn^2)/10a) show that (tn) is convergentb)compute the limit of tn as n goes to infinity谢谢!

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 12:31:23
数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:t0=0; t(n+1)=tn+(25-tn^2)/10a) show that (tn) is convergentb)compute the limit of tn as n goes to infinity谢谢!
xݑJ@_K_&}Bm 37mD7J V\XUDւ}fW0Iuq!j8kx8A|y$AAҭ2LAmXЮS!v.6]- y}B "\G6VU YA1H YP+f [NqJH[thRum?@GxnŬ 2%0hr*|5\v2IߚY?!˃?0_/ڊ_5%mU30"%KD&Qb2B2Dͥ;vƣKިg~4's5m Q,œ*̠H1Z%l9h"}U|͟L

数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:t0=0; t(n+1)=tn+(25-tn^2)/10a) show that (tn) is convergentb)compute the limit of tn as n goes to infinity谢谢!
数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:
t0=0; t(n+1)=tn+(25-tn^2)/10
a) show that (tn) is convergent
b)compute the limit of tn as n goes to infinity
谢谢!

数学分析:construct a sequence (tn) of real numbers according to the following recursive rules:t0=0; t(n+1)=tn+(25-tn^2)/10a) show that (tn) is convergentb)compute the limit of tn as n goes to infinity谢谢!
a)0{tn}是有界无穷数列,所以必定收敛
b)设limtn=x,则x=x+(25-x^2)/5,x=5(x=-5舍去)
即limtn=5