因式分解1、m²(m-1)-4(1-m)²2、1-a²+ab-1/4b²3、x³-x²y-xy²+y³4、(x²+4x)²-8(x²+4x)+165、(x+2)(x-2)-4y(x-y)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 09:34:18
因式分解1、m²(m-1)-4(1-m)²2、1-a²+ab-1/4b²3、x³-x²y-xy²+y³4、(x²+4x)²-8(x²+4x)+165、(x+2)(x-2)-4y(x-y)
xZ[OK+~Zhf&9iw Ξ#J3o&01` &Ò_vzl?/W]=1/+=]]]]]UUNvD"Jo:hӖ[iͶuq0h[9neJ繕Ko,<#iijHu7gIf8Z$vkHTJ_Z.%_n~JAyQ*-v[YK$z7{Tz7ݷݓbqMcց8>/vzW/ƻ^}1H$z8K~沨A7׸ib^$\X]t/W~s%ܠE3qTxιF3O7:Ọ̈G9WK>h4_բq *U}mj.5cv~5r-\)˱wnPn ~I0ʽ$-)GEBxsx`0>xupXvux4uט/ 3;kA.Qu/.,KC]uQ0S"zi52-Ή%J=)$5Mncv NUY/=ސf/5d5f~]C@`{1˛3=3s|!;2!֥-=~FY]??+1o)F!S&wcN!4I \ڮ5p e6/Qyӫt8TH7EeJ,=ws`,FȺLE Ŗ`|}/TV4`).Ms%^]nt Ta8=$qcIqMbF c#dI# L Z*a8I'cS; :f"3U8t l?hm2`D#ؑ1r@$:  Y)1+uwO0* V!C8%5Y'`SQdUzkHiT-g,if}`)^ 6hO$:NlY߈&AȢd%-W<5 5hQ +3_=0?p AvB-~q9(3pKq<@W^DPedΓDF.~ٿz$PmMA {Ey'fbWW 4L5uFBe;m}OK$!=y4crr m4ճeKQ0VE=h'?[ſ(mEQ3/`'wQ,\j@vmؽ!ѐaVK%XMbxzY j4<)FQ$Azp

因式分解1、m²(m-1)-4(1-m)²2、1-a²+ab-1/4b²3、x³-x²y-xy²+y³4、(x²+4x)²-8(x²+4x)+165、(x+2)(x-2)-4y(x-y)
因式分解
1、m²(m-1)-4(1-m)²
2、1-a²+ab-1/4b²
3、x³-x²y-xy²+y³
4、(x²+4x)²-8(x²+4x)+16
5、(x+2)(x-2)-4y(x-y)

因式分解1、m²(m-1)-4(1-m)²2、1-a²+ab-1/4b²3、x³-x²y-xy²+y³4、(x²+4x)²-8(x²+4x)+165、(x+2)(x-2)-4y(x-y)
先拆开
分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识. 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法. 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难. 同样,这道题也可以这样做. ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出. 2. x^3-x^2+x-1 解法:=(x^3-x^2)+(x-1) =x^2(x-1)+ (x-1) =(x-1)(x^2+1) 利用二二分法,提公因式法提出 x2,然后相合轻松解决. 3. x^2-x-y^2-y 解法:=(x^2-y^2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a^2-b^2=(a+b)(a-b),然后相合解决.
十字相乘法
这种方法有两种情况. ①x^2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) . ②kx^2+mx+n型的式子的因式分解 如果有k=ab,n=cd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d). 图示如下: a╲╱c b╱╲d 例如:因为 1 ╲╱2 -3╱╲ 7 -3×7=-21,1×2=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3). 十字相乘法口诀:首尾分解,交叉相乘,求和凑中
拆项、添项法
这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解.要注意,必须在与原多项式相等的原则下进行变形. 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b).
配方法
对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法.属于拆项、补项法的一种特殊情况.也要注意必须在与原多项式相等的原则下进行变形. 例如:x^2+3x-40 =x^2+3x+2.25-42.25 =(x+1.5)^2-(6.5)^2 =(x+8)(x-5).
应用因式定理
对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a. 例如:f(x)=x2+5x+6,f(-2)=0,则可确定x+2是x2+5x+6的一个因式.(事实上,x2+5x+6=(x+2)(x+3).) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数
换元法
有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法. 相关公式
注意:换元后勿忘还元. 例如在分解(x2+x+1)(x2+x+2)-12时,可以令y=x^2+x,则 原式=(y+1)(y+2)-12 =y^2+3y+2-12=y^2+3y-10 =(y+5)(y-2) =(x^2+x+5)(x2+x-2) =(x^2+x+5)(x+2)(x-1). 也可以参看右图.
求根法
令多项式f(x)=0,求出其根为x1,x2,x3,……xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)……(x-xn) . 例如在分解2x^4+7x^3-2x^2-13x+6时,令2x^4 +7x^3-2x^2-13x+6=0, 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1. 所以2x^4+7x^3-2x^2-13x+6=(2x-1)(x+3)(x+2)(x-1).
图象法
令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,……xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)……(x-xn). 与方法⑼相比,能避开解方程的繁琐,但是不够准确. 例如在分解x^3 +2x^2-5x-6时,可以令y=x^3; +2x^2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x^3+2x^2-5x-6=(x+1)(x+3)(x-2).
主元法
先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解.
特殊值法
将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式. 例如在分解x^3+9x^2+23x+15时,令x=2,则 x^3 +9x^2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=3×5×7 . 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x^3+9x^2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此.
待定系数法
首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解. 例如在分解x^4-x^3-5x^2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式. 于是设x^4-x^3-5x^2-6x-4=(x^2+ax+b)(x^2+cx+d) 相关公式
=x^4+(a+c)x^3+(ac+b+d)x^2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4. 解得a=1,b=1,c=-2,d=-4. 则x^4-x^3-5x^2-6x-4=(x^2+x+1)(x^2-2x-4). 也可以参看右图.
双十字相乘法
双十字相乘法属于因式分解的一类,类似于十字相乘法. 双十字相乘法就是二元二次六项式,启始的式子如下: ax^2+bxy+cy^2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用. 例:分解因式:x^2+5xy+6y^2+8x+18y+12. 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解. 图如下,把所有的数字交叉相连即可 x 2y 2 ① ② ③ x 3y 6 ∴原式=(x+2y+2)(x+3y+6). 双十字相乘法其步骤为: ①先用十字相乘法分解2次项,如十字相乘图①中x^2+5xy+6y^2=(x+2y)(x+3y); ②先依一个字母(如y)的一次系数分数常数项.如十字相乘图②中6y²+18y+12=(2y+2)(3y+6); ③再按另一个字母(如x)的一次系数进行检验,如十字相乘图③,这一步不能省,否则容易出错. 利用根与系数的关系对二次多项式进行因式分解 例:对于二次多项式 aX^2+bX+c(a≠0) aX^2+bX+c=a[X^2+(b/a)X+(c/a)X]. 当△=b^2-4ac≥0时, =a(X^2-X1-X2+X1X2) =a(X-X1)(X-X2).
编辑本段多项式因式分解的一般步骤
①如果多项式的各项有公因式,那么先提公因式; ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; ④分解因式,必须进行到每一个多项式因式都不能再分解为止. 也可以用一句话来概括:“先看有无公因式,再看能否套公式.十字相乘试一试,分组分解要合适.” 几道例题 1.分解因式(1+y)^2-2x^2(1+y^2)+x^4(1-y)^2. 原式=(1+y)^2+2(1+y)x^2(1-y)+x^4(1-y)^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(补项) =[(1+y)+x^2(1-y)]^2-2(1+y)x^2(1-y)-2x^2(1+y^2)(完全平方) =[(1+y)+x^2(1-y)]^2-(2x)^2 =[(1+y)+x^2(1-y)+2x][(1+y)+x^2(1-y)-2x] =(x^2-x^2y+2x+y+1)(x^2-x^2y-2x+y+1) =[(x+1)^2-y(x^2-1)][(x-1)^2-y(x^2-1)] =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y). 2.求证:对于任何实数x,y,下式的值都不会为33: x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5. 原式=(x^5+3x^4y)-(5x^3y^2+15x^2y^3)+(4xy^4+12y^5) =x^4(x+3y)-5x^2y^2(x+3y)+4y^4(x+3y) =(x+3y)(x^4-5x^2y^2+4y^4) =(x+3y)(x^2-4y^2)(x^2-y^2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y). (分解因式的过程也可以参看右图.) 当y=0时,原式=x^5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立. 3..△ABC的三边a、b、c有如下关系式:-c^2+a^2+2ab-2bc=0,求证:这个三角形是等腰三角形. 分析:此题实质上是对关系式的等号左边的多项式进行因式分解. 证明:∵-c^2+a^2+2ab-2bc=0, ∴(a+c)(a-c)+2b(a-c)=0. ∴(a-c)(a+2b+c)=0. ∵a、b、c是△ABC的三条边, ∴a+2b+c>0. ∴a-c=0, 即a=c,△ABC为等腰三角形. 4.把-12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1)分解因式. -12x^2n×y^n+18x^(n+2)y^(n+1)-6x^n×y^(n-1) =-6x^n×y^(n-1)(2x^n×y-3x^2y^2+1).

1:原式=(m-1)(m²-4m+4)=(m-1)(m-2)²
2:原式=1-(a²-ab+1/4b²)=1-(a-1/2b)²
3:原式=x³-x²y+y³-xy²= x²(x-y)-y²(x-y)=(x²-²y)(x-y)=(x+y)(x-y)²
4: 原式=(x²+4x-4)²
5 原式=-x²-4-4xy+4y²=(x-2y)²-4

、、、太麻烦了,送你一题
=m3-m2-4(1-2m+m2)
=m3-m2-4+8m-4m2
=m3+8m-5m2