如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的同侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 08:23:07
xRN@ׅ3a9I Cq1A
E#ƊiY}Hcas>ZY>^ +P`L)`(ׯj0BWp?
*_.cb1D[Lp֎`l:+DQDwпQXEmg#ϒS.{Rʎz1F5cNV{
w͙VN00uՁeX9[8hbKT|(N O/"iƵ%v#oa|rPH!qg6LZH]5a\?Yl'd]4
GA9,-şH:Y>{]
如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的同侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,
如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的同侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;(1)延长MP交CN于点E.求证:三角形BPM≌三角形CPE;PM=PN
如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的同侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
证明:(1)BM⊥直线a于点M,CN⊥直线a于点N,
所以BM平行于CN
所以角BMP=角E,角MBP=角ECP
又BP=CP
所以三角形BPM≌三角形CPE(AAS)
(2)因为三角形BPM≌三角形CPE
所以MP=PE
又CN⊥直线a
所以PN=PM(直角三角形斜边上的中线等于斜边的一半)
1
没图
如图,在三角形ABC中,点P为边BC的中点,直线a绕顶点A旋转,
如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的同侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;
在三角形ABC中,点p为BC的中点,(1)求证AP
如图,在△ABC中,在边BC上确定点P,使点P到AB,AC距离相等.(画图题)三角形ABC为锐角三角形
如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的如图,在三角形ABC中,AC=BC>AB,点P为三角形ABC所在平面内一点,且点P与三角形ABC的任意两个顶点构成三角形PAB,三角
已知如图D为三角形ABC边AB的中点,E在BC上,且BE=1/3BC,且CD、AE交与P点,若S三角形APC=8,求S三角形ABC.Z
如图 分别以三角形ABC的边AC.BC.为一边.在三角形ABC外作正方形ACDE和CBFG,点P是EF的中点求证点P到AB的距离是AB的一半
如图 分别以三角形ABC的边AC.BC.为一边.在三角形ABC外作正方形ACDE和CBFG,点P是EF的中点求证点P到AB的距离是AB的一半
如图 在RT三角形ABC中 AC=6BC=8圆O为ABC的外接圆 P为BC中点
如图在三角形ABC中AB,BC的垂直平分线EF,GH相交于点p且点p在AC上求证三角形ABC为直角三角形
如图,已知三角形ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以2厘米如图,已知三角形ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点.点P、Q是线段BC、AC上的动点,如果点P以2厘米每秒的
如图已知三角形abc中,ab=ac=6厘米,角b=角c,bc=4厘米,点d为ab的中点(1)如果点p在线段bc上以1厘米如图已知在三角形ABC中,AB=AC=6cm,角B=角C,BC=4cm,点D为AB的中点如果点P在线段BC上以1 cm/s的速度由点B向
如图,在三角形ABC中,D为BC的中点,DE垂直BC交
如图,在三角形ABC中,M是BC边的中点,AP是角A的平分线.BP垂直AP于点P,已知AB=12,AC=22,则MP的长为
如图,在三角形ABC中,AB=3.AC=4.Bc=5.p为Bc上一动点,PE垂直AB于E.PF垂直于F.M为EF的中点,则AM的最小值为?
如图,在三角形ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN;(1)延长MP交CN于点E.求证:三角形BPM≌三角形CPE;PM=PN
如图 在三角形ABC中,点P为BC边中点,直线a经过顶点A,若点B,P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接MP并延长,交CN于E.求证:三角形BPM全等于三角形CPE
已知,如图,在三角形ABC中,M,N分别是边AB,AC中点,点P是BC边上的一点,且S四边形AMPN=25平方厘米,求S三角形求S三角形ABC