∫√(1+x)/(1-x)dx ∫sinxcosx/4+(cosx)^4

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/04 04:06:01
∫√(1+x)/(1-x)dx ∫sinxcosx/4+(cosx)^4
x[N@B@H S )f.PP H\A܂܂ZD/wL,@A6w,:U1NbGR˜dV?[YfYѶ5B+ʦxRS5z.+ 1FVI(RPK%if~B"FER"m`b;QppJO l\@cD[QOSjuDհOT

∫√(1+x)/(1-x)dx ∫sinxcosx/4+(cosx)^4
∫√(1+x)/(1-x)dx ∫sinxcosx/4+(cosx)^4

∫√(1+x)/(1-x)dx ∫sinxcosx/4+(cosx)^4
∫√[(1+x)/(1-x)] dx=∫(1+x)/√(1-x^2) dx
=arcsinx-∫1/2√(1-x^2) d(1-x^2)
=arcsinx-√(1-x^2)+C
∫sinxcosx/[4+(cosx)^4] dx=∫-cosx/[4+(cosx)^4] dcosx
=∫-t/(4+t^4) dt
=∫-1/2(4+t^4) dt^2
=-1/4∫1/[1+(t^2/2)^2] dt^2/2
=-arctan(t^2/2)/4+C
=-arctan(cos^2 x /2)/4+C