详细一点的幂函数的概念

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 19:33:21
详细一点的幂函数的概念
xV[O"I+s3rDo. Q;)p/Yޒy0)Ӿ&&So.9 T:6`N-Ix|du4_ `.1blQ}׸4綄1DQM '0q1*GG<@ucSir"2k`RB0-M,|EO9rܚЭ 83i2i| /b/@,ف_oa."⬬Ǟ[ғ_^IO:.!R3S< }2Nmb:-,ϴG)ؗ۬WJ+Nh^V9JA>`>+N:mm4"R+&ui~2*~PJ!ć!/VBk^jDtʄ yRԐqH\.Z^+~^

详细一点的幂函数的概念
详细一点的幂函数的概念

详细一点的幂函数的概念
形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数.   当a取非零的有理数时是比较容易理解的,而对于a取无理数时,初学者则不大容易理解了.因此,在初等函数里,我们不要求掌握指数为无理数的问题,只需接受它作为一个已知事实即可,因为这涉及到实数连续统的极为深刻的知识.
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,且p/q为既约分数(即p、q互质),q和p都是整数,则x^(p/q)=q次根号下(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞).当指数a是负整数时,设a=-k,则y=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x0的所有实数,q不能是偶数;   排除了为负数这种可能,即对于x为大于或等于0的所有实数,a就不能是负数.
当a为不同的数值时,幂函数的定义域的不同情况如下:   1.如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;2.如果同时q为奇数,则函数的定义域为不等于0 的所有实数.   当x为不同的数值时,幂函数的值域的不同情况如下:   1.在x大于0时,函数的值域总是大于0的实数.   2.在x小于0时,则只有同时q为奇数,函数的值域为非零的实数.   而只有a为正数,0才进入函数的值域.   由于x大于0是对a的任意取值都有意义的,   因此下面给出幂函数在第一象限的各自情况.
 可以看到:   (1)所有的图形都通过(1,1)这点.(a≠0) a>0时 图象过点(0,0)和(1,1)   (2)当a大于0时,幂函数为单调递增为增函数   而a小于0时,幂函数为单调递减为减函数.   (3)当a大于1时,幂函数图形下凸(竖抛);当a小于1大于0时,幂函数图形上凸(横抛).当a小于0时,图像为双曲线.   (4)当a小于0时,a越小,图形倾斜程度越大.   (5)显然幂函数无界限.   (6)a=2n,该函数为偶函数 {x|x≠0}.

幂函数的图象:   ①当a≤-1且a为奇数时,函数在第一、第三象限为减函数   ②当a≤-1且a为偶数时,函数在第二象限为减函数,第一象限为增函数   ③当a=0时,函数图象平行于x轴且y=1   ④当0